Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 3, pp 230–236 | Cite as

Optical Dipole Trap for Laser-Cooled Lithium-7 Atoms

  • Vladimir A. SautenkovEmail author
  • Sergey A. Saakyan
  • Andrey A. Bobrov
  • Daniil A. Kudrinskiy
  • Eugenia V. Vilshanskaya
  • Boris B. Zelener
Article
  • 8 Downloads

Abstract

In this work, we discuss a far-off resonance optical dipole trap for cold lithium-7 atoms. A single optical trapping beam was produced by a continuous-wave fiber laser. Using our experimental data, we obtained important parameters of the trap, such as size of the cold atomic cloud, and evaluate the dipole potential and the rate of the trap losses. Information on temperature is acquired from observation of parametric resonances. We investigate the parametric resonances obtained with strong modulation of the trap potential and record superharmonics. We plan to prepare ultra-cold gas of highly-excited lithium atoms and study interactions between Rydberg atoms.

Keywords

laser cooling magneto-optical trap optical dipole trap trap parametric resonances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett., 57, 314 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    R. Grimm, M. Weidem¨uller, and Y. B. Ovchinnikov, Adv. Atom. Mol. Opt. Phy., 42, 95 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    K. Martiyanov, V. Makhalov, and A. Turlapov, Phys. Rev. Lett., 105, 030404 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    N. Gross and L. Khaykovich, Phys. Rev. A, 77, 023604 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    N. Gross, Z. Shotan, S. Kokkelmans, and L. Khaykovich, Phys. Rev. Lett., 103, 163202 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    A. Keesling, A. Omran, H. Levine, et al., Nature, 568, 207 (2019).ADSCrossRefGoogle Scholar
  7. 7.
    O. I. Berdasov, D. V. Sutyrin, S. A. Strelkin, et al., Quantum Electron., 48, 431 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    E. S. Kalganova, A. A. Golovizin, D. O. Shevnin, et al., Quantum Electron., 48, 415 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    A. Golovizin, E. Fedorova, D. Tregubov, et al., Nat. Commun., 10, 1724 (2019).ADSCrossRefGoogle Scholar
  10. 10.
    P. Schaus, M. Cheneau, M. Endres, et al., Nature, 491, 7422 (2012).CrossRefGoogle Scholar
  11. 11.
    B. B. Zelener, S. A. Saakyan, V. A. Sautenkov, et al., J. Exp. Theor. Phys., 119, 795 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    V. A. Sautenkov, S. A. Saakyan, E. V. Vilshanskaya, et al., J. Russ. Laser Res., 38, 91 (2017).CrossRefGoogle Scholar
  13. 13.
    V. A. Sautenkov, S. A. Saakyan, A. A. Bobrov, et al., J. Opt. Soc. Am., 35, 1546 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    J. Sebastian, C. Gross, K. Li, et al., Phys. Rev. A, 90, 033417 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    H. S. Han, S. Yoon, and D. Cho, J. Korean Phys. Soc., 66, 1675 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    Y. V. Likhanova, S. B. Medvedev, M. P. Fedoruk, et al., JETP Lett., 103, 403 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    V. B. Makhalov, K. A. Martiyanov, and A. V. Turlapov, Metrologia, 53, 1287 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    V. B. Makhalov and A. V. Turlapov, Quantum Electron., 47, 431 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    S. Eckel, D. S. Barker, J. A. Fedchak, et al., Metrologia, 55, S182 (2018)CrossRefGoogle Scholar
  20. 20.
    T. A. Savard, K. M. O’Hara, and J. E. Thomas, Phys. Rev. A, 56, R1095 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod. Phys., 71, 1 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    R. Jauregui, N. Poli, G. Roati, and G. Modugno, Phys. Rev. A, 64, 033403 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    R. Jauregui, Phys. Rev. A, 64, 053408 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    A. T. Grier, I. Ferrier-Barbut, B. S. Rem, et al., Phys. Rev. A, 87, 063411 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vladimir A. Sautenkov
    • 1
    Email author
  • Sergey A. Saakyan
    • 1
  • Andrey A. Bobrov
    • 1
  • Daniil A. Kudrinskiy
    • 1
  • Eugenia V. Vilshanskaya
    • 1
  • Boris B. Zelener
    • 1
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations