Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 3, pp 221–229 | Cite as

Modular Quantum Key Distribution Setup for Research and Development Applications

  • V. E. Rodimin
  • E. O. Kiktenko
  • V. V. Usova
  • M. Y. Ponomarev
  • T. V. Kazieva
  • A. V. Miller
  • A. S. Sokolov
  • A. A. Kanapin
  • A. V. Losev
  • A. S. Trushechkin
  • M. N. Anufriev
  • N. O. Pozhar
  • V. L. Kurochkin
  • Y. V. Kurochkin
  • A. K. FedorovEmail author
Article
  • 5 Downloads

Abstract

Quantum key distribution (QKD), ensuring the unconditional security of information, attracts a significant deal of interest. An important task is to design QKD systems as a platform for education as well as for research and development applications and fast prototyping new QKD protocols. Here, we present a modular QKD setup driven by National Instruments (NI) cards with open source LabView code, open source Python code for post-processing procedures, and open source protocol for external applications. An important feature of the apparatus developed is its flexibility offering the possibility to modify optical schemes, as well as prototype, and verify novel QKD protocols. The other distinctive feature of the setup developed is the implementation of the decoy-state protocol, which is a standard tool for secure long-distance quantum communications. By testing the plug-and-play scheme realizing BB84 and decoy-state BB84 QKD protocols, we show that the developed QKD setup shows a high degree of robustness beyond laboratory conditions. We demonstrate the results of the use of the developed modular setup for QKD experiments in the urban environment.

Keywords

quantum key distribution urban fiber-optic channels polarization encoding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. S. Vernam, J. Am. Inst. Electr. Eng., 45, 109 (1926).Google Scholar
  2. 2.
    V. A. Kotel’nikov, Classified Report (1941).Google Scholar
  3. 3.
    S. N. Molotkov, Phys. Usp., 49, 750 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    C. E. Shannon, Bell Syst. Tech. J., 27, 379 (1948).CrossRefGoogle Scholar
  5. 5.
    B. Schneier, Applied Cryptography, John Wiley, New York (1996).zbMATHGoogle Scholar
  6. 6.
    C. H. Bennet and G. Brassard, in: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India, 1984), IEEE Publ., New York (1984), p. 175.Google Scholar
  7. 7.
    N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys., 74, 145 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, et al., Rev. Mod. Phys., 81, 1301 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, Quant. Inform., 2, 16025 (2016).CrossRefGoogle Scholar
  10. 10.
    W. K. Wootters and W. H. Zurek, Nature (London), 299, 802 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    J. Qiu, Nature (London), 508, 441 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    A. Muller, T. Herzog, B. Huttner, et al., Appl. Phys. Lett., 70, 793 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    ID Quantique [www.idquantique.com].
  14. 14.
    L. Lydersen, C. Wiechers, C. Wittmann, et al., Nat. Photon., 4, 686 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    S. Sajeed, I. Radchenko, S. Kaiser, et al., Phys. Rev. A, 91, 032326 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    P. Chaiwongkhot, S. Sajeed, L. Lydersen, and V. Makarov, Quantum Sci. Technol., 2, 044003 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    Ø. Marøy, M. Gudmundsen, L. Lydersen, and J. Skaar, IET Inform. Secur., 8, 277 (2014).CrossRefGoogle Scholar
  18. 18.
    I. H. L´opez Grande, C. T. Schmiegelow, and M. A. Larotonda, Papers Phys., 8, 080002 (2016).CrossRefGoogle Scholar
  19. 19.
    J. L. Duligall, M. S. Godfrey, K. A. Harrison, et al., New J. Phys., 8, 249 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    Z. Tang, Z. Liao, F. Xu, et al., Phys. Rev. Lett., 112, 190503 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    W.-Y. Hwang, Phys. Rev. Lett., 91, 057901 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett., 94, 230504 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    X.-B. Wang, Phys. Rev. Lett., 94, 230503 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, Phys. Rev. A, 72, 012326 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    G.B. Xavier, N. Walenta, G. Vilela de Faria, et al., New J. Phys., 11, 045015 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    K. A. Patel, J. F. Dynes, I. Choi, et al., Phys. Rev. X, 2, 041010 (2012).Google Scholar
  27. 27.
    RQC QKD Software [github.com/RQC-QKD-Software].
  28. 28.
  29. 29.
    E. O. Kiktenko, A. S. Trushechkin, M. N. Anufriev, et al., “Post-processing procedure for quantum key distribution systems” (2016), [DOI:  https://doi.org/10.5281/zenodo.200365].
  30. 30.
    E. O. Kiktenko, M. N. Anufriev, N. O. Pozhar, and A. K. Fedorov, “Symmetric information reconciliation for the QKD post-processing procedure” (2016), [DOI:  https://doi.org/10.5281/zenodo.164953].
  31. 31.
    M. N. Anufriev, N. O. Pozhar, and A. K. Fedorov, “Quantum key distribution (QKD) Thrift API” (2019), [DOI:  https://doi.org/10.5281/zenodo.2547335].
  32. 32.
    A. V. Duplinskiy, E. O. Kiktenko, N. O. Pozhar, et al., J. Russ. Laser Res., 39, 113 (2018).CrossRefGoogle Scholar
  33. 33.
    E. O. Kiktenko, A. S. Trushechkin, Y. V. Kurochkin, and A. K. Fedorov, J. Phys. Conf. Ser., 741, 012081 (2016).CrossRefGoogle Scholar
  34. 34.
    E. O. Kiktenko, A. S. Trushechkin, C. C. W. Lim, et al., Phys. Rev. Appl., 8, 044017 (2017).ADSCrossRefGoogle Scholar
  35. 35.
    A. K. Fedorov, E. O. Kiktenko, and A. S. Trushechkin, Lobachevskii J. Math., 39, 992 (2018).MathSciNetCrossRefGoogle Scholar
  36. 36.
    E. O. Kiktenko, A. O. Malyshev, A. A. Bozhedarov, et al., J. Russ. Laser Res., 39, 558 (2018).CrossRefGoogle Scholar
  37. 37.
    V. L. Kurochkin, A. V. Zverev, Y. V. Kurochkin, et al., Russ. Microelectron., 40, 245 (2011).CrossRefGoogle Scholar
  38. 38.
    V. Zavodilenko, A. Losev, A. Miller, et al., J. Phys.: Conf. Ser., 917, 062034 (2017).Google Scholar
  39. 39.
    R. Ozhegov, M. Elezov, Y. Kurochkin, et al., SPIE Proc., 9440, 94401F (2014).CrossRefGoogle Scholar
  40. 40.
    V. L. Kurochkin, A. V. Zverev, Y. V. Kurochkin, et al., Optoelectron. Instrum. Proc., 51, 548 (2015).CrossRefGoogle Scholar
  41. 41.
    V. L. Kurochkin, Y. V. Kurochkin, A. V. Miller, et al., SPIE Proc., 10224, 102242U (2016).CrossRefGoogle Scholar
  42. 42.
    E. O. Kiktenko, N. O. Pozhar, A. V. Duplinskiy, et al., Quantum Electron., 47, 798 (2017).ADSCrossRefGoogle Scholar
  43. 43.
    M. Curty, F. Xu, W. Cui, et al., Nat. Commun., 5, 3732 (2014).ADSCrossRefGoogle Scholar
  44. 44.
    C. C. W. Lim, M. Curty, N. Walenta, et al., Phys. Rev. A, 89, 022307 (2014).ADSCrossRefGoogle Scholar
  45. 45.
    Z. Zhang, Q. Zhao, M. Razavi, and X. Ma, Phys. Rev. A, 95, 012333 (2017).ADSCrossRefGoogle Scholar
  46. 46.
    A. S. Trushechkin, E. O. Kiktenko, and A. K. Fedorov, Phys. Rev. A, 96, 022316 (2017).ADSCrossRefGoogle Scholar
  47. 47.
    R. Gallager, IRE Trans. Inform. Theory, 8, 21 (1962).CrossRefGoogle Scholar
  48. 48.
    D.J.C. MacKay, IEEE Trans. Inform. Theory, 45, 399 (1999).MathSciNetCrossRefGoogle Scholar
  49. 49.
    T. Krovetz and P. Rogaway, Lect. Notes Comput. Sci., 2015, 73 (2001).CrossRefGoogle Scholar
  50. 50.
    M. Tomamichel and A. Leverrier, Quantum, 1, 14 (2017).CrossRefGoogle Scholar
  51. 51.
    M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, Nat. Commun., 3, 634 (2012).ADSCrossRefGoogle Scholar
  52. 52.
    AIT QKD R10 Software [sqt.ait.ac.at/software/projects/qkd].Google Scholar
  53. 53.
    M. Peev, C. Pacher, R. Alléaume, et al., New J. Phys., 11, 075001 (2009).ADSCrossRefGoogle Scholar
  54. 54.
    M. K. Bochkov and A. S. Trushechkin, Phys. Rev. A, 99, 032308 (2019).ADSCrossRefGoogle Scholar
  55. 55.
    J. Ma, Y. Zhou, X. Yuan, and X. Ma, Los Alamos arXiv:1810.03267 (2018).Google Scholar
  56. 56.
    A. K. Fedorov, A. A. Kanapin, V. L. Kurochkin, et al., in: Proceedings of the Scientific–Practical Conference “Research and Development – 2016” Springer, Moscow (2018), p. 83.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. E. Rodimin
    • 1
    • 2
  • E. O. Kiktenko
    • 1
    • 3
  • V. V. Usova
    • 1
    • 4
  • M. Y. Ponomarev
    • 1
    • 2
  • T. V. Kazieva
    • 1
    • 2
  • A. V. Miller
    • 1
    • 2
  • A. S. Sokolov
    • 1
  • A. A. Kanapin
    • 1
  • A. V. Losev
    • 1
    • 2
  • A. S. Trushechkin
    • 1
    • 3
  • M. N. Anufriev
    • 1
  • N. O. Pozhar
    • 1
  • V. L. Kurochkin
    • 1
    • 2
  • Y. V. Kurochkin
    • 1
    • 2
  • A. K. Fedorov
    • 1
    • 2
    Email author
  1. 1.Russian Quantum Center SkolkovoMoscowRussia
  2. 2.QRate SkolkovoMoscowRussia
  3. 3.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  4. 4.Skolkovo Institute of Science and TechnologyMoscowRussia

Personalised recommendations