Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 3, pp 207–212 | Cite as

Atom Manipulations by Enhanced Quadrupole Interaction

  • S. Al-AwfiEmail author
Article

Abstract

We develop a theory that leads to the explanation of the atom manipulations due to active quadrupole interaction of twisted light with atoms at near-resonance frequencies. We demonstrate that the total mechanical effects of active quadrupole interaction on atoms just gives a rotational motion in the case of the configuration of a two counter-propagating beams. Typical parameters are assumed to determine both dissipative and quadrupole forces to obtain the trajectories for an atom.

Keywords

quadrupole interaction twisted light quadrupole force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Allen, M. Beijesbergen, R. Spreeuw, and J. Woerdman, Phys. Rev. A, 45, 8185 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    J. W. R. Tabosa and D. V. Petrov, Phys. Rev. Lett., 83, 4967 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    M. S. Bigelow, P. Zerom, and R. W. Boyd, Phys. Rev. Lett., 92, 083902 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Bezverbny, V. G. Niz’ev, and A. M. Tumaikin, Quantum Electron., 34, 685 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    A. Askin, J. M. Dziedzic, J. E. Bjokholm, and S. Chu, Opt. Lett., 11, 288 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    D. G. Grier, Nature, 424, 810 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    M. E. Andersen, C. Ryu, P. Clauda, et al., Phys. Rev. Lett., 97, 170406 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    D. L. Andrews, Structured Light and Its Applications. An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, Academic, Burlington, MS (2008).Google Scholar
  9. 9.
    D. L. Andrews and M. Babiker, The Orbital Angular Momentum of Light, Cambridge University Press (2012).Google Scholar
  10. 10.
    V. E. Lembessis and M. Babiker, Phys. Rev. A, 94, 043854 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    Ye Li and Y. X. Zhang, Chin. Phys. Lett., 33, 054205 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    V. E. Lembessis and M. Babiker, Phys. Rev. Lett., 110, 083002 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. Andrews, J. Opt., 13, 064002 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    S. Tojo, M. Hasuo, and T. Fujimoto, Phys. Rev. Lett., 92, 053001 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    A. M. Kern and O. J. F. Martin, Phys. Rev. A, 85, 022501 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    A. M. Kern and O. J. F. Martin, Nano Lett., 11, 482 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    R. Fickler, R. Lapkiewicz, W. N. Plick, et al., Science, 338, 640 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsTaibah UniversityMedinaSaudi Arabia

Personalised recommendations