Advertisement

Effects of Kerr Medium and Stark Shift Parameter on Wehrl Entropy and the Field Purity for Two-Photon Jaynes–Cummings Model Under Dispersive Approximation

  • Abdullah F. Al Naim
  • Javed Y. Khan
  • E. M. Khalil
  • S. Abdel-KhalekEmail author
Article

Abstract

We estimate the quantum state of a two-level atom and the coherent field in a Kerr medium subject to the cavity damping. The density matrix of the field is considered within the framework of the dispersive approximation. We study dynamical properties of the linear entropy, Wehrl entropy, and the Wehrl phase density during the time of interaction. The effects of the Kerr medium and cavity damping on the time evolution of different quantities are examined. The results refer to the sensitivity of these aspects to changes either in the decay parameter or in the Kerr-like medium and Stark-shift parameters. Linear entropy and nonclassical properties of the field quantified by the Wehrl entropy are also very sensitive to the Kerr medium and Stark-shift parameter.

Keywords

Dispersive approximation Jaynes–Cummings model Kerr-like medium linear entropy Wehrl entropy cavity damping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).Google Scholar
  2. 2.
    H. M. Wisemann and G. J. Milburn, Quantum Measurement and Control, Cambridge University Press (2010).Google Scholar
  3. 3.
    A. Orlowski, H. Paul, and G. Kastelewicz, Phys. Rev. A, 52, 1621 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    R. Dermez and S. Abdel-Khalek, J. Russ. Laser Res., 32, 287 (2011).CrossRefGoogle Scholar
  5. 5.
    A. Wehrl, Rep. Math. Phys., 16, 353 (1979).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Miranowicz, H. Matsueda, and M. R. B. Wahiddin, J. Phys. A: Math. Gen., 33, 5159 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    S. Abdel-Khalek, K. Berreda, H. Eleuch, and M Abel-Aty, Opt. Quantum Electron., 42, 887 (2011).CrossRefGoogle Scholar
  8. 8.
    K. Piatek and W. Leonski, J. Phys. A: Math. Gen., 34, 4951 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    R. Glauber and V. I. Man’ko, Zh. Éksp. Teor. Fiz. 87, 790 (1984).ADSGoogle Scholar
  10. 10.
    S. Abdel-Khalek and A.-S. F. Obada, Ann. Phys., 325, 2542 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    A.-S. F. Obada, S. Abdel-Khalek, E. M. Khalil, and S. I. Ali, Phys. Scr., 56, 055009 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    M. Algarni, H. Al-Ghamdi, and S. Abdel-Khalek, Appl. Math. Inf. Sci., 11, 1455 (2017).MathSciNetCrossRefGoogle Scholar
  13. 13.
    G. De Palma. Lett. Math. Phys., 108, 97 (2018).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    E. T. Jaynes and F. W. Cummings, Proc. IEEE, 51, 89 (1963).CrossRefGoogle Scholar
  15. 15.
    F. W. Cummings, Phys. Rev., 140, A1051 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    M. S. Abdalla, A. S.-F. Obada, and S. Abdel-Khalek, Chaos Solit. Fract., 36, 405 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    M. J. Faghihi, M. K. Tavassoly, and M. Bagheri Harouni, Laser Phys., 24, 045202 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    M. J. Faghihi, M. K. Tavassoly, and M. Hatami, Physica A, 407, 100 (2014).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Cordero and J. Récamier, J. Phys. A: Math. Theor.. 45, 385303 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    O. de los Santos-Sánchez and J. Récamier, J. Phys. B: At. Mol. Opt. Phys., 45, 015502 (2012).Google Scholar
  21. 21.
    M. S. Abdalla, E. M. Khalil, A.-S. F. Obada, et al., AIP Adv., 7, 015013 (2017).ADSCrossRefGoogle Scholar
  22. 22.
    S. Abdel-Khalek, Y. S. El-Saman, I. Mechai, and M. Abdel-Aty, Braz. J. Phys., 48, 9 (2018).ADSCrossRefGoogle Scholar
  23. 23.
    J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurement, Princeton University Press, NJ (1983).CrossRefGoogle Scholar
  24. 24.
    W. H. Zurek, Phys. Today, 44, 36 (1991).CrossRefGoogle Scholar
  25. 25.
    V. V. Dodonov and V. I. Man’ko, Phys. Rev. A, 20, 550 (1979).ADSCrossRefGoogle Scholar
  26. 26.
    V. I. Man’ko and S. S. Safonov, J. Russ. Laser Res., 20, 119 (1999).CrossRefGoogle Scholar
  27. 27.
    R. Omn‘es, The Interpretation of Quantum Mechanics, Princeton University Press, NJ (1994).Google Scholar
  28. 28.
    A.-S. F. Obada, M. S. Abdalla, A.-B. A. Mohamed, and E. M. Khalil, Solid State Commun., 51, 1824 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys., 73, 565 (2001).ADSCrossRefGoogle Scholar
  30. 30.
    S. L. Braunstein, Quantum Computing: Where DoWeWant to Go Tomorrow?, Wiley-VCH, New York (1999).CrossRefzbMATHGoogle Scholar
  31. 31.
    D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information, Springer, Berlin (2000).CrossRefzbMATHGoogle Scholar
  32. 32.
    C. H. Bennett, G. Brassard, C. Crepeau, et al., Phys. Rev. Lett., 70, 1895 (1993).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    C. A. Fuchs, N. Gisin, R. B. Griffiths, et al., Phys. Rev. A, 56, 1163 (1997).ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Abdel-Aty, S. Abdel-Khalek, and A.-S. F. Obada, Chaos Solit. Fract., 12, 2015 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    L. Zhou, H. S. Song, Y. X. Luo, and C. Li, Phys. Lett. A, 284, 156 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    A.-S. F. Obada, H. A. Hessian, and A.-B. A. Mohamed, Opt. Commun., 280, 230 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    A.-S. F. Obada, H. A. Hessian, and A.-B. A. Mohamed, J. Phys. B: At. Mol. Opt. Phys., 40, 2241 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    S. J. D. Phoenix and P. L. Knight, Phys. Rev. A, 44, 6023 (1991).ADSCrossRefGoogle Scholar
  39. 39.
    S. J. D. Phoenix and P. L. Knight, Phys. Rev. Lett., 66, 2833 (1991).ADSCrossRefGoogle Scholar
  40. 40.
    A.-S. F. Obada, M. M. A. Ahmed, F. K. Faramawy, and E. M. Khalil, Chaos Solit. Fract., 28, 983 (2006).ADSCrossRefGoogle Scholar
  41. 41.
    H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press (2002).Google Scholar
  42. 42.
    H. Carmichael, An Open Systems Approach to Quantum Optics, Springer, Berlin (1993).Google Scholar
  43. 43.
    S. Abdel-Khalek, E. M. Khalil, and S. I. Ali, Laser Phys., 18, 135 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Abdullah F. Al Naim
    • 1
  • Javed Y. Khan
    • 1
  • E. M. Khalil
    • 2
    • 3
  • S. Abdel-Khalek
    • 2
    • 4
    Email author
  1. 1.Physics DepartmentKing Faisal UniversityAlhasa - HofufSaudi Arabia
  2. 2.Mathematics Department, Faculty of ScienceTaif UniversityTaifSaudi Arabia
  3. 3.Mathematics Department, Faculty of ScienceAl-Azher UniversityCairoEgypt
  4. 4.Mathematics Department, Faculty of ScienceSohag UniversitySohagEgypt

Personalised recommendations