Advertisement

Journal of Russian Laser Research

, Volume 39, Issue 4, pp 318–324 | Cite as

Is there a Problem with our Hamiltonians for Quantum Nonlinear Optical Processes?

  • Stephen M. Barnett
Article
  • 19 Downloads

Abstract

The models we use, habitually, to describe quantum nonlinear optical processes have been remarkably successful, yet, with few exceptions, they each contain a mathematical flaw. We present this flaw, show how it can be fixed, and, in the process, suggest why we can continue to use our favored Hamiltonians.

Keywords

quantum optics nonlinear optics model Hamiltonians three-wave mixing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Stenholm circa (1986) private communication. His statement, if I remember correctly, was “Does it bother you that your Hamiltonian has a spectrum that is unbounded from below?” The very same question was posed soon afterwards, also, by K. Rzążewski after the presentation of a conference paper.Google Scholar
  2. 2.
    W. H. Louisell, Radiation and Noise in Quantum Electronics, McGraw-Hill, New York (1964).Google Scholar
  3. 3.
    J. Peřina, Quantum Statistics of Linear and Nonlinear Optical Phenomena, Kluwer, Dordrecht (1991).CrossRefGoogle Scholar
  4. 4.
    P. Meystre and D. F. Walls (Eds.), Nonclassical Effects in Quantum Optics, American Institute of Physics, New York (1991). This is a reprint collection of important early papers in quantum optics, many of them dealing with quantum nonlinear optics.Google Scholar
  5. 5.
    D. F. Walls and G. J. Milburn, Quantum Optics, Springer-Verlag, Berlin (1994).CrossRefGoogle Scholar
  6. 6.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press (1995).Google Scholar
  7. 7.
    M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press (1997).Google Scholar
  8. 8.
    S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics, Oxford University Press (1997).Google Scholar
  9. 9.
    H.-A. Bachor, A Guide to Experiments in Quantum Optics, Wiley-VCH, Weinheim (1998).zbMATHGoogle Scholar
  10. 10.
    R. Loudon, The Quantum Theory of Light, 3rd ed., Oxford University Press (2000).Google Scholar
  11. 11.
    H. J. Carmichael, Statistical Methods in Quantum Optics, Springer, Berlin (2008), Vol. 2.Google Scholar
  12. 12.
    R. W. Boyd, Nonlinear Optics, 3rd ed., Elsevier, Amsterdam (2008).Google Scholar
  13. 13.
    G. New, Introduction to Nonlinear Optics, Cambridge University Press (2011).Google Scholar
  14. 14.
    R. Bonifacio and G. Preparata, Lett. Nuovo Cimento, 1, 887 (1969).CrossRefGoogle Scholar
  15. 15.
    D. F. Walls and R. Barakat, Phys. Rev. A, 1, 446 (1970).ADSCrossRefGoogle Scholar
  16. 16.
    S. M. Barnett and P. L. Knight, Opt. Acta, 31, 435 (1984); Erratum: 31 1203 (1984).Google Scholar
  17. 17.
    A. Yariv, Quantum Electronics, 2nd ed., Wiley, New York (1975).Google Scholar
  18. 18.
    M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum Electronics, Wiley, New York (1986).Google Scholar
  19. 19.
    P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge University Press (1990).Google Scholar
  20. 20.
    A. G. Newell and J. V. Moloney, Nonlinear Optics, Addison-Wesley, Redwood City, CA (1992).zbMATHGoogle Scholar
  21. 21.
    P. Mandel P, Nonlinear Optics, Wiley-VCH, Weinheim (2010).Google Scholar
  22. 22.
    S. P. Krinitzky and D. T. Pegg, Phys. Rev. A, 33, 403 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    S. J. Buckle, S. M. Barnett, P. L. Knight, et al., J. Mod. Opt., 33, 1129 (1986).Google Scholar
  24. 24.
    B. W. Shore, The Theory of Coherent Atomic Excitation: Vol. 2, Multilevel Atoms and Incoherence, Wiley, New York (1990).Google Scholar
  25. 25.
    Z. Ficek and S. Swain, Quantum Interference and Coherence, Springer, New York (2004).zbMATHGoogle Scholar
  26. 26.
    S. Stenholm and K.-A. Suominen, Quantum Approach to Informatics, Wiley, Hoboken, NJ (2005).CrossRefGoogle Scholar
  27. 27.
    B. W. Shore, Manipulating Quantum Structures Using Laser Pulses, Cambridge University Press (2011).Google Scholar
  28. 28.
    D. J. Klein, J. Chem. Phys., 61, 786 (1974).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    C. E. Soliverez, Phys. Rev. A, 24, 4 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    D. Bohm, Quantum Theory, Prentice-Hall, New York (1951); reprinted by Dover, New York (1989).Google Scholar
  31. 31.
    R. H. Dicke and J. P. Wittke, Introduction to Quantum Mechanics, Addison Wesley, Reading, MA (1960).zbMATHGoogle Scholar
  32. 32.
    E. Merzbacher, Quantum Mechanics, 2nd ed., Wiley, New York (1970).zbMATHGoogle Scholar
  33. 33.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed., Butterworth Heinemann, Oxford (1977).zbMATHGoogle Scholar
  34. 34.
    M.-A. Dupertuis, S. M. Barnett, and S. Stenholm, J. Opt. Soc. Am. B., 4, 1102 (1987).ADSCrossRefGoogle Scholar
  35. 35.
    M.-A. Dupertuis, S. M. Barnett, and S. Stenholm, J. Opt. Soc. Am. B., 4, 1124 (1987).ADSCrossRefGoogle Scholar
  36. 36.
    C. R. Gilson, S. M. Barnett, and S. Stenholm, J. Mod. Opt., 34, 949 (1987).ADSCrossRefGoogle Scholar
  37. 37.
    S. M. Barnett, S. Stenholm, and D. T. Pegg, Opt. Commun., 73, 314 (1989).ADSCrossRefGoogle Scholar
  38. 38.
    S. M. Barnett and S. Stenholm, J. Mod. Opt., 47, 2869 (2000).ADSCrossRefGoogle Scholar
  39. 39.
    S. Franke-Arnold, E. Andersson, S. M. Barnett, and S. Stenholm, Phys. Rev. A, 63, 052301 (2001).ADSCrossRefGoogle Scholar
  40. 40.
    S. M. Barnett and S. Stenholm, Phys. Rev. A, 64, 033808 (2001).ADSCrossRefGoogle Scholar
  41. 41.
    J. Salo, S. M. Barnett, and S. Stenholm, Opt. Commun., 259, 772 (2006).ADSCrossRefGoogle Scholar
  42. 42.
    S. Croke, S. M. Barnett, and S. Stenholm, Ann. Phys. (N. Y.), 323, 893 (2008).ADSCrossRefGoogle Scholar
  43. 43.
    S. M. Barnett and S. Stenholm, “Causal interpretation of quantum mechanics: an alternative to Bohmian mechanics,” Unpublished note (2009).Google Scholar
  44. 44.
    S. Stenholm, The Quest for Reality, Oxford University Press (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of GlasgowGlasgowU.K.

Personalised recommendations