Is there a Problem with our Hamiltonians for Quantum Nonlinear Optical Processes?
Article
First Online:
- 25 Downloads
Abstract
The models we use, habitually, to describe quantum nonlinear optical processes have been remarkably successful, yet, with few exceptions, they each contain a mathematical flaw. We present this flaw, show how it can be fixed, and, in the process, suggest why we can continue to use our favored Hamiltonians.
Keywords
quantum optics nonlinear optics model Hamiltonians three-wave mixingPreview
Unable to display preview. Download preview PDF.
References
- 1.S. Stenholm circa (1986) private communication. His statement, if I remember correctly, was “Does it bother you that your Hamiltonian has a spectrum that is unbounded from below?” The very same question was posed soon afterwards, also, by K. Rzążewski after the presentation of a conference paper.Google Scholar
- 2.W. H. Louisell, Radiation and Noise in Quantum Electronics, McGraw-Hill, New York (1964).Google Scholar
- 3.J. Peřina, Quantum Statistics of Linear and Nonlinear Optical Phenomena, Kluwer, Dordrecht (1991).CrossRefGoogle Scholar
- 4.P. Meystre and D. F. Walls (Eds.), Nonclassical Effects in Quantum Optics, American Institute of Physics, New York (1991). This is a reprint collection of important early papers in quantum optics, many of them dealing with quantum nonlinear optics.Google Scholar
- 5.D. F. Walls and G. J. Milburn, Quantum Optics, Springer-Verlag, Berlin (1994).CrossRefGoogle Scholar
- 6.L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press (1995).Google Scholar
- 7.M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press (1997).Google Scholar
- 8.S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics, Oxford University Press (1997).Google Scholar
- 9.H.-A. Bachor, A Guide to Experiments in Quantum Optics, Wiley-VCH, Weinheim (1998).zbMATHGoogle Scholar
- 10.R. Loudon, The Quantum Theory of Light, 3rd ed., Oxford University Press (2000).Google Scholar
- 11.H. J. Carmichael, Statistical Methods in Quantum Optics, Springer, Berlin (2008), Vol. 2.Google Scholar
- 12.R. W. Boyd, Nonlinear Optics, 3rd ed., Elsevier, Amsterdam (2008).Google Scholar
- 13.G. New, Introduction to Nonlinear Optics, Cambridge University Press (2011).Google Scholar
- 14.R. Bonifacio and G. Preparata, Lett. Nuovo Cimento, 1, 887 (1969).CrossRefGoogle Scholar
- 15.D. F. Walls and R. Barakat, Phys. Rev. A, 1, 446 (1970).ADSCrossRefGoogle Scholar
- 16.S. M. Barnett and P. L. Knight, Opt. Acta, 31, 435 (1984); Erratum: 31 1203 (1984).Google Scholar
- 17.A. Yariv, Quantum Electronics, 2nd ed., Wiley, New York (1975).Google Scholar
- 18.M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum Electronics, Wiley, New York (1986).Google Scholar
- 19.P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge University Press (1990).Google Scholar
- 20.A. G. Newell and J. V. Moloney, Nonlinear Optics, Addison-Wesley, Redwood City, CA (1992).zbMATHGoogle Scholar
- 21.P. Mandel P, Nonlinear Optics, Wiley-VCH, Weinheim (2010).Google Scholar
- 22.S. P. Krinitzky and D. T. Pegg, Phys. Rev. A, 33, 403 (1986).ADSCrossRefGoogle Scholar
- 23.S. J. Buckle, S. M. Barnett, P. L. Knight, et al., J. Mod. Opt., 33, 1129 (1986).Google Scholar
- 24.B. W. Shore, The Theory of Coherent Atomic Excitation: Vol. 2, Multilevel Atoms and Incoherence, Wiley, New York (1990).Google Scholar
- 25.Z. Ficek and S. Swain, Quantum Interference and Coherence, Springer, New York (2004).zbMATHGoogle Scholar
- 26.S. Stenholm and K.-A. Suominen, Quantum Approach to Informatics, Wiley, Hoboken, NJ (2005).CrossRefGoogle Scholar
- 27.B. W. Shore, Manipulating Quantum Structures Using Laser Pulses, Cambridge University Press (2011).Google Scholar
- 28.D. J. Klein, J. Chem. Phys., 61, 786 (1974).ADSMathSciNetCrossRefGoogle Scholar
- 29.C. E. Soliverez, Phys. Rev. A, 24, 4 (1981).ADSCrossRefGoogle Scholar
- 30.D. Bohm, Quantum Theory, Prentice-Hall, New York (1951); reprinted by Dover, New York (1989).Google Scholar
- 31.R. H. Dicke and J. P. Wittke, Introduction to Quantum Mechanics, Addison Wesley, Reading, MA (1960).zbMATHGoogle Scholar
- 32.E. Merzbacher, Quantum Mechanics, 2nd ed., Wiley, New York (1970).zbMATHGoogle Scholar
- 33.L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed., Butterworth Heinemann, Oxford (1977).zbMATHGoogle Scholar
- 34.M.-A. Dupertuis, S. M. Barnett, and S. Stenholm, J. Opt. Soc. Am. B., 4, 1102 (1987).ADSCrossRefGoogle Scholar
- 35.M.-A. Dupertuis, S. M. Barnett, and S. Stenholm, J. Opt. Soc. Am. B., 4, 1124 (1987).ADSCrossRefGoogle Scholar
- 36.C. R. Gilson, S. M. Barnett, and S. Stenholm, J. Mod. Opt., 34, 949 (1987).ADSCrossRefGoogle Scholar
- 37.S. M. Barnett, S. Stenholm, and D. T. Pegg, Opt. Commun., 73, 314 (1989).ADSCrossRefGoogle Scholar
- 38.S. M. Barnett and S. Stenholm, J. Mod. Opt., 47, 2869 (2000).ADSCrossRefGoogle Scholar
- 39.S. Franke-Arnold, E. Andersson, S. M. Barnett, and S. Stenholm, Phys. Rev. A, 63, 052301 (2001).ADSCrossRefGoogle Scholar
- 40.S. M. Barnett and S. Stenholm, Phys. Rev. A, 64, 033808 (2001).ADSCrossRefGoogle Scholar
- 41.J. Salo, S. M. Barnett, and S. Stenholm, Opt. Commun., 259, 772 (2006).ADSCrossRefGoogle Scholar
- 42.S. Croke, S. M. Barnett, and S. Stenholm, Ann. Phys. (N. Y.), 323, 893 (2008).ADSCrossRefGoogle Scholar
- 43.S. M. Barnett and S. Stenholm, “Causal interpretation of quantum mechanics: an alternative to Bohmian mechanics,” Unpublished note (2009).Google Scholar
- 44.S. Stenholm, The Quest for Reality, Oxford University Press (2011).Google Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2018