Advertisement

Journal of Russian Laser Research

, Volume 39, Issue 2, pp 113–119 | Cite as

Quantum-Secured Data Transmission in Urban Fiber-Optics Communication Lines

  • A. V. Duplinskiy
  • E. O. Kiktenko
  • N. O. Pozhar
  • M. N. Anufriev
  • R. P. Ermakov
  • A. I. Kotov
  • A. V. Brodskiy
  • R. R. Yunusov
  • V. L. Kurochkin
  • A. K. Fedorov
  • Y. V. Kurochkin
Article

Abstract

Quantum key distribution (QKD) provides theoretic information security in communication based on the laws of quantum physics. In this work, we report an implementation of quantum-secured data transmission in the infrastructure of Sberbank of Russia in standard communication lines in Moscow. The experiment is realized on the basis of already deployed urban fiber-optics communication channels with significant losses. We realize the decoy-state BB84 QKD protocol using the one-way scheme with polarization encoding for generating keys. Quantum-generated keys are then used for continuous key renewal in the hardware devices for establishing a quantum-secured VPN Tunnel between two offices of Sberbank. The hybrid approach used offers possibilities for long-term protection of the transmitted data; it is promising for integrating in the already existing information security infrastructure.

Keywords

quantum key distribution urban fiber-optics channels polarization encoding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Schneier, Applied Cryptography, John Wiley, New York (1996).zbMATHGoogle Scholar
  2. 2.
    P. W. Shor, SIAM J. Comput., 26, 1484 (1997).MathSciNetCrossRefGoogle Scholar
  3. 3.
    L. K. Grover, in: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (New York, USA, 1996), p. 212.Google Scholar
  4. 4.
    N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys., 74, 145 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    H.-K. Lo, M. Curty, and K. Tamaki, Nat. Photon., 8, 595 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    E. Diamanti, H.-K. Lo, and Z. Yuan, Quantum Inform., 2, 16025 (2016).CrossRefGoogle Scholar
  7. 7.
    W.-Y. Hwang, Phys. Rev. Lett., 91, 057901 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett., 94, 230504 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    X.-B. Wang, Phys. Rev. Lett., 94, 230503 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, Phys. Rev. A, 72, 012326 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    M. Curty, F. Xu, W. Cui, et al., Nat. Commun., 5, 3732 (2014).CrossRefGoogle Scholar
  12. 12.
    C. C. W. Lim, M. Curty, N. Walenta, et al., Phys. Rev. A, 89, 022307 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Zhang, Q. Zhao, M. Razavi, and X. Ma, Phys. Rev. A, 95, 012333 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    A. S. Trushechkin, E. O. Kiktenko, and A. K. Fedorov, Phys. Rev. A, 96, 022316 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    A. Duplinskiy, V. Ustimchik, A. Kanapin, et al., Opt. Express, 25, 28886 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    E. O. Kiktenko, N. O. Pozhar, A. V. Duplinskiy, et al., Quantum Electron., 47, 798 (2017).ADSCrossRefGoogle Scholar
  17. 17.
  18. 18.
    E. O. Kiktenko, A. S. Trushechkin, Y. V. Kurochkin, and A. K. Fedorov, J. Phys. Conf. Ser., 741, 012081 (2016).CrossRefGoogle Scholar
  19. 19.
    E. O. Kiktenko, A. S. Trushechkin, C. C. W. Lim, et al., Phys. Rev. Appl., 8, 044017 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    D. Elkouss, J. Martínez-Mateo, and V. Martin, “Secure rate-adaptive reconciliation,” in: Proceedings of the IEEE International Symposium on Information Theory and its Applications (ISITA), IEEE, Taichung, Taiwan (2010), p. 179.Google Scholar
  21. 21.
    D. Elkouss, J. Martínez-Mateo, and V. Martin, Quantum Inform. Comput., 11, 226 (2011).Google Scholar
  22. 22.
    A. S. Trushechkin, E. O. Kiktenko, and A. K. Fedorov, Los Alamos arXiv:1705.06664 (2017).Google Scholar
  23. 23.
    K. A. Balygin, V. I. Zaitsev, A. N. Klimov, et al., JETP Lett., 105, 606 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    A. V. Gleim, V. V. Chistyakov, O. I. Bannik, et al., J. Opt. Tech., 84, 362 (2017).CrossRefGoogle Scholar
  25. 25.
    E. O. Kiktenko, N. O. Pozhar, M. N. Anufriev, et al., Los Alamos arXiv:1705.09258 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Duplinskiy
    • 1
    • 2
  • E. O. Kiktenko
    • 1
    • 3
    • 4
  • N. O. Pozhar
    • 1
    • 3
  • M. N. Anufriev
    • 1
    • 3
  • R. P. Ermakov
    • 1
  • A. I. Kotov
    • 5
  • A. V. Brodskiy
    • 6
  • R. R. Yunusov
    • 1
  • V. L. Kurochkin
    • 1
    • 7
  • A. K. Fedorov
    • 1
    • 3
    • 7
  • Y. V. Kurochkin
    • 1
    • 7
  1. 1.Russian Quantum CenterSkolkovoRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  3. 3.QAppSkolkovoRussia
  4. 4.Steklov Mathematical Institute of the Russian Academy of SciencesMoscowRussia
  5. 5.AMICON Co., Ltd.MoscowRussia
  6. 6.Sberbank of RussiaMoscowRussia
  7. 7.QRateSkolkovoRussia

Personalised recommendations