Advertisement

Journal of Russian Laser Research

, Volume 37, Issue 5, pp 440–447 | Cite as

A Compact Second-Harmonic Generator for Tasks of Precision Spectroscopy Within the Range of 240–600 nm

  • T. V. Shpakovsky
  • I. V. Zalivako
  • I. A. Semerikov
  • A. A. Golovizin
  • A. S. Borisenko
  • K. Yu. KhabarovaEmail author
  • V. N. Sorokin
  • N. N. Kolachevsky
Article
  • 38 Downloads

Abstract

We develop a universal design of a second-harmonic generator enabling a high-efficiency conversion of the CW laser radiation to a range of 240–600 nm. The distinctive features of the generator are its compact size and high stability achieved using an all-in-one (monolithic) hermetic body frame, which enables applications of this device in a broad range of precision spectroscopy and laser cooling. We design three systems for radiation conversion to ranges of 280, 410, and 560 nm and present their characteristics. The systems are used for laser cooling of magnesium ions (280 nm) and thulium atoms (410 nm). Due to the conversion efficiency and stability, the second-harmonic generators developed surpass most commercially available systems of Western manufacturers.

Keywords

second harmonic generation laser cooling nonlinear crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping, Springer, New York, Berlin, Heidelberg (1999).Google Scholar
  2. 2.
    C. Wieman, G. Flowers, and S. Gilbert, Am. J. Phys., 63, 317 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    S. Snigirev, A. Golovizin, D. Tregubov, et al., Phys. Rev. A, 89, 012510 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    T. L. Nicholson, S. L. Campbell, R. B. Hutson, et al., Nature Commun., 6, 6896 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    X. Xu, T. H. Loftus, J. L. Hall, et al., J. Opt. Soc. Am. B, 20, 968 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    K. Yu. Khabarova, S. N. Slyusarev, S. A. Strelkin, et al., Quantum Electron., 42, 1021 (2012).CrossRefGoogle Scholar
  7. 7.
    E. S. Shuman, J. F. Barry, and D. DeMille, Nature, 467, 820 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    D. D. Sukachev, E. S. Kalganova, A. V. Sokolov, et al., Quantum Electron., 43, 374 (2013).ADSCrossRefGoogle Scholar
  9. 9.
  10. 10.
    D. J. Larson, J. C. Bergquist, J. J. Bollinger, et al., Phys. Rev. Lett., 57, 70 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    R. E. Drullinger, D. J. Wineland, and J. C. Bergquist, Appl. Phys., 22, 365 (1980).ADSCrossRefGoogle Scholar
  12. 12.
    C.W. Chou, D. B. Hume, and J. C. J. Koelemei, Phys. Rev. Lett., 104, 070802 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    R. C. Thompson, G. P. Barwood, and P. Gill, Optica Acta: Int. J. Opt., 33, 535 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    B. Hemmerling, F. Gebert, Y. Wan, et al., Appl. Phys. B, 104, 583 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    D. Sukachev, A. Sokolov, K. Chebakov, et al., Phys. Rev. A, 82, 011405(R) (2010).Google Scholar
  16. 16.
    F. Riehle, Frequency Standards. Basics and Applications, Wiley (2004).Google Scholar
  17. 17.
    G. D. Boyd and D. A. Kleinman, J. Appl. Phys., 39, 3597 (1968).ADSCrossRefGoogle Scholar
  18. 18.
    T. W. Haensch and B. Couillaud, Opt. Commun., 35, 441, (1980).ADSCrossRefGoogle Scholar
  19. 19.
    R. W. P. Drever, J. L. Hall, F. V. Kowalski, et al., Appl. Phys. B, 31, 97 (1983).ADSCrossRefGoogle Scholar
  20. 20.
    Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, Opt. Lett., 17, 640 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    A. V. Smith, Crystal Nonlinear Optics: with SNLO Examples, AS-Photonics (2015).Google Scholar
  22. 22.
    ISO Standard 11146, Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios (2005).Google Scholar
  23. 23.
    S. G. Grechin, A. V. Zuev, A. E. Kokh, et al., Quantum Electron., 40, 509 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    C. G. Parthey, A. Matveev, J. Alnis, et al., Phys. Rev. Lett., 107, 20, 203001 (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • T. V. Shpakovsky
    • 1
    • 2
  • I. V. Zalivako
    • 1
    • 2
  • I. A. Semerikov
    • 1
    • 2
  • A. A. Golovizin
    • 1
    • 2
    • 3
  • A. S. Borisenko
    • 2
    • 3
  • K. Yu. Khabarova
    • 1
    • 2
    • 3
    Email author
  • V. N. Sorokin
    • 1
    • 2
  • N. N. Kolachevsky
    • 1
    • 2
    • 3
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Russian Quantum CenterMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations