Advertisement

Journal of Russian Laser Research

, Volume 36, Issue 6, pp 550–561 | Cite as

Quantum Discord and Entanglement Distribution as the Flow of Correlations Through a Dissipative Quantum System

  • N. Quinn
  • C. Croal
  • N. KorolkovaEmail author
Article
  • 68 Downloads

Abstract

In this paper, we study the propagation of quantum correlations in open quantum systems using quantum discord as their measure. The role of system–environment correlations in discord dynamics and some operational interpretations of discord are discussed, in particular, activation of correlations into entanglement. The quantum nature of correlations is studied in systems of optical modes, that is, Gaussian quantum states. A counter-intuitive scheme of entanglement distribution by an auxiliary mode, which remains separable at all times, is analyzed to unveil the synergy of coherence and dissipation in quantum protocols with mixed states.

Keywords

quantum communication quantum discord quantum correlations open systems entanglement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ollivier and W. H. Zurek, Phys. Rev. Lett., 88, 017901 (2001).CrossRefADSGoogle Scholar
  2. 2.
    L. Henderson and V. Vedral, J. Phys. A: Math. Gen., 34, 6899 (2001).zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    I. Devetak and A. Winter, IEEE Trans. Inform. Theor., 50, 3183 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Weedbrook, S. Pirandola, R. Garcia-Patron, et al., Rev. Mod. Phys., 84, 621669 (2012).CrossRefGoogle Scholar
  5. 5.
    S. L. Braunstein and P. van Loock, Rev. Mod. Phys., 77, 513577 (2005).CrossRefGoogle Scholar
  6. 6.
    G. Adesso and A. Datta, Phys. Rev. Lett., 105, 030501 (2010).CrossRefADSGoogle Scholar
  7. 7.
    P. Giorda and M. G. A. Paris, Phys. Rev. Lett., 105, 020503 (2010).CrossRefADSGoogle Scholar
  8. 8.
    V. Chille, N. Quinn, C. Peuntinger, et al., Phys. Rev. A, 91, 050301(R) (2015).Google Scholar
  9. 9.
    A. Streltsov, H. Kampermann, and D. Brus, Phys. Rev. Lett., 107, 170502 (2011).CrossRefADSGoogle Scholar
  10. 10.
    F. Ciccarello and V. Giovannetti, Phys. Rev. A, 85, 022108 (2012).CrossRefADSGoogle Scholar
  11. 11.
    L. S. Madsen, A. Berni, M. Lassen, and U. L. Andersen, Phys. Rev. Lett., 109, 030402 (2012).CrossRefADSGoogle Scholar
  12. 12.
    M. Koashi and A. Winter, Phys. Rev. A, 69, 022309 (2004).MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    L. Mišta, Jr and N. Korolkova, Phys. Rev. A, 80, 032310 (2009).CrossRefADSGoogle Scholar
  14. 14.
    Ch. Peuntinger, V. Chille, L. Mišta, et al., Phys. Rev. Lett., 111, 230506 (2013).CrossRefADSGoogle Scholar
  15. 15.
    C. E. Vollmer, D. Schulze, T. Eberle, et al., Phys. Rev. Lett., 111, 230505 (2013).CrossRefADSGoogle Scholar
  16. 16.
    L. Mišta and N. Korolkova, Phys. Rev. A, 86, 040305(R) (2012).Google Scholar
  17. 17.
    T. K. Chuan, J. Maillard, K. Modi, et al., Phys. Rev. Lett., 109, 070501 (2012).CrossRefADSGoogle Scholar
  18. 18.
    R. Tatham and N. Korolkova, Phys. Scr., T160, 014040 (2014).CrossRefADSGoogle Scholar
  19. 19.
    F. Benatti and R. Floreanini, J. Phys. A: Math. Gen., 39, 2689 (2006).zbMATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    D. Mogilevtsev and N. Korolkova, Phys. Rev. A, 79, 053832 (2009).CrossRefADSGoogle Scholar
  21. 21.
    A. Streltsov, H. Kampermann, and D. Brus, Phys. Rev. Lett., 108, 250501 (2012).CrossRefADSGoogle Scholar
  22. 22.
    A. Ferraro, S. Olivares, and M. G. A. Paris, ArXiv:quant-ph/0503237 (2005).Google Scholar
  23. 23.
    J. Williamson. Am. J. Math., 58, 141 (1936).CrossRefGoogle Scholar
  24. 24.
    G. Adesso, A. Serafini, and F. Illuminati. Open Syst. Inform. Dyn., 12, 189 (2005).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of St. AndrewsScotlandUK

Personalised recommendations