Journal of Russian Laser Research

, Volume 35, Issue 4, pp 391–400 | Cite as

Spectrally Efficient 3D Optical CDMA Using Coherent Spatial Phase–Time Coding/Decoding

Article

Abstract

We demonstrate a WDM compatible optical CDMA system incorporating 3D spectral phase–time encoding/decoding. We provide coding and decoding using binary [0, π] phase chips for six users at 6 Gb/s, with a single coded signal separated with an acceptable bit-error rate 10 9. The coding and decoding method is based on 3D coding of tightly spaced phase-locked laser lines that is compatible with conventional WDM networking. In optical CDMA systems, we propose to provide encoding and decoding done by converting Hadamard codes (used for conventional CDMA system) to the phase codes. We report that duo-binary modulation format is the best with adequate bandwidth compression. We confirm that better simulation results are reached in terms of the Q factor and bit error rate.

Keywords

Code-division multiple access (CDMA) code-division multiplexing optical code-division multiple access (OCDMA) optical communications wavelength-division multiplexing (WDM) on–off keying (OOK) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Mendez, R. M. Gagliardi, V. J. Hernandez, et al., IEEE J. Lightwave Technol., 21, 524 (2003).CrossRefGoogle Scholar
  2. 2.
    A. J. Mendez, R. M. Gagliardi, V. J. Hernandez, et al., IEEE J. Lightwave Technol., 22, 2409 (2004).CrossRefADSGoogle Scholar
  3. 3.
    A. J. Mendez, R. M. Gagliardi, H. X. C. Feng, et al., IEEE J. Lightwave Technol., 18, 1685 (2000).CrossRefADSGoogle Scholar
  4. 4.
    X. Sun and F. M. Davidson, J. Lightwave Technol., 10, (1992).Google Scholar
  5. 5.
    A. Stok and E. H. Sargent, IEEE Commun. Lett., 6, 409 (2002).CrossRefGoogle Scholar
  6. 6.
    J. A. Salehi, IEEE Trans. Commun., 37, 824 (1989).CrossRefGoogle Scholar
  7. 7.
    E. S. Shivaleela, A. Selvarajan, and T. Srinivas, J. Lightwave Technol., 23, 647 (2005).CrossRefADSGoogle Scholar
  8. 8.
    E. S. Shivaleela, K. N. Sivarajan, and A. Selvarajan, J. Lightwave Technol., 16, 501 (1998).CrossRefADSGoogle Scholar
  9. 9.
    R. S. Kaler, A. K. Sharma, and T. S. Kamal, Opt. Commun., 209, 107 (2002).CrossRefADSGoogle Scholar
  10. 10.
    D. D. Sampson, G. J. Pendock, and R. A. Griffin, Fiber Integr. Opt., 16, 129 (1997).CrossRefGoogle Scholar
  11. 11.
    A. M. Weiner and J. A. Salehi, “Optical code-division multiple access,” in: J. E. Midwinter (Ed.), Photonics in Switching, Academic Press, San Diego (1993), Vol. 2, p. 73.Google Scholar
  12. 12.
    J. E. McGeehan, S. M. Reza, M. Nezam, et al., “3D time–wavelength–polarization OCDMA coding for increasing the number of users in OCDMA LANs,” talk presented at the Optical Fiber Communication Conference, Los Angeles (2004), paper FE5.Google Scholar
  13. 13.
    J. A. Salehi, A. M. Weiner, and J. P. Heritage, J. Lightwave Technol., 8, 478 (1990).CrossRefADSGoogle Scholar
  14. 14.
    J. Singh and M. L. Singh, IEEE Photon. Technol. Lett., 22, (2010).Google Scholar
  15. 15.
    S. Kim, K. Yu, and N. Park, J. Lightwave Technol., 18, 502 (2000).CrossRefADSGoogle Scholar
  16. 16.
    Z. Jiang, S.-D. Yang, D. E. Leaird, et al., J. Lightwave Technol., 23, (2005).Google Scholar
  17. 17.
    Y. Du, S. J. B. Yoo, and Z. Ding, IEEE Photon. Technol. Lett., 18, (2006).Google Scholar
  18. 18.
    K. J. Horadam, Hadamard Matrices and Their Applications, Princeton University Press (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringThapar UniversityPatialaIndia

Personalised recommendations