Journal of Russian Laser Research

, Volume 35, Issue 4, pp 333–346 | Cite as

Simulation of Supernova Expansion

  • R. A. YakhinEmail author
  • V. B. Rozanov
  • N. V. Zmitrenko
  • R. V. Stepanov
  • P. A. Kuchugov


We study the possibility of laboratory modeling of some processes that are intrinsic to supernova (SN) explosion by means of powerful lasers (the so-called laboratory astrophysics); in particular, the possibility of reproducing astrophysical data via numerical models was originally aimed at laser plasma simulation. First of all, we analyze hydrodynamic similarity criteria for the considered processes. Then, we conduct 1D and 2D hydrodynamic simulations to model the expansion dynamics of the SN remnant (the progenitor mass is ∼5–15 that of the Sun) during several hundreds of seconds after the explosion, including initially asymmetric configurations. Basing on the similarity criteria, we consider possible laser targets – simulators for a supernova, which mimic some processes inherent in astrophysical phenomenon, such as shock wave propagation through a medium, the development of hydrodynamic instabilities at contact boundaries of shells of different densities, etc. We present a simple solution to the problem of blast wave propagation in a medium with density distributed according to a decreasing power law, which is a good approximation for the density distribution in a supernova progenitor.


supernova SN 1987A laser target laser plasma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Gaifulin, A. V. Zakharov, V. Ya. Karpov, et al., Problems of Atomic Science and Technology, Ser. Methods and Programs of Numerical Solution of Problems of Mathematical Physics, TsNIIATOMINFORM Publisher, Moscow (1983), Vol. 2 [in Russian].Google Scholar
  2. 2.
    V. F. Tishkin, V. V. Nikishin, I. V. Popov, and A. P. Favorskii, Plasma Phys. Rep., 26, 405, (2000).CrossRefADSGoogle Scholar
  3. 3.
    K. Kifonidis, T. Plewa, H.-Th. Janka, and E. Müller, Astron. Astrophys., 408, 621 (2003).CrossRefADSGoogle Scholar
  4. 4.
    A. R. Miles, “New regimes for supernova-relevant Rayleigh–Teylor experiments on the NIF,” Talk at the International Workshop on the Physics of Compressible and Turbulent Mixing (IWPCTM 12) (Moscow, July 15, 2010).Google Scholar
  5. 5.
    S. Bouquet, “Instabilities in supernova remnants,” Talk at the InternationalWorkshop on the Physics of Compressible and Turbulent Mixing (IWPCTM 13), July 16–20, 2012).Google Scholar
  6. 6.
    U. Hwang and J. M. Laming, Astrophys. J., 746, 130 (2012).CrossRefADSGoogle Scholar
  7. 7.
    B. Müller, H.-Th. Janka, and A. Marek, Astrophys. J., 756, 1 (2012).CrossRefGoogle Scholar
  8. 8.
    N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, et al., J. Exp. Theor. Phys., 118, 384, (2014).CrossRefADSGoogle Scholar
  9. 9.
    C. C. Joggerst, A. Almgren, and S. E. Woosley, Astrophys. J., 723, 353 (2010).CrossRefADSGoogle Scholar
  10. 10.
    N. V. Zmitrenko, V. S. Imshennik, M. Yu. Khlopov, and V. M. Chechetkin, J. Exp. Theor. Phys., 48, 589, (1978).ADSGoogle Scholar
  11. 11.
    V. S. Imshennik and D. K. Nadyozhin, Sov. Sci. Rev., Sect. E, 8, 1 (1989).Google Scholar
  12. 12.
    E. L. Moses, “Overview and inertial confinement fusion vision,” Talk at the IFSA 2009 (San Francisco, September 6–11, 2009).Google Scholar
  13. 13.
    S. G. Garanin, S. A. Bel’kov, and S. V. Bondarenko, “Laser installation UFL-2M building concept,” in: Abstracts of Papers of the 39th Zvenigorod International Conference on Plasma Physics and Controlled Fusion (Zvenigorod, Moscow Region, Russia, February 6–10, 2012 [in Russian].Google Scholar
  14. 14.
    D. D. Ryutov, B. A. Remington, H. F. Robey, and R. P. Drake, Phys. Plasmas, 8, 1804 (2001).CrossRefADSGoogle Scholar
  15. 15.
    D. D. Ryutov, R. P. Drake, J. Kane, et al., Astrophys. J., 518, 821 (1999).CrossRefADSGoogle Scholar
  16. 16.
    D. D. Ryutov and B. A. Remington, Plasma Phys. Control. Fusion, 44, B407 (2002).CrossRefGoogle Scholar
  17. 17.
    L. I. Sedov, Similarity and Dimensional Methods in Mechanics, Tenth Edition, CRC Press, Florida (2000).Google Scholar
  18. 18.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover Books on Physics), Courier Dover Publications, New York (2002). 346Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. A. Yakhin
    • 1
    Email author
  • V. B. Rozanov
    • 1
  • N. V. Zmitrenko
    • 2
  • R. V. Stepanov
    • 1
  • P. A. Kuchugov
    • 1
    • 2
  1. 1.P. N. Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.M. V. Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations