Journal of Russian Laser Research

, Volume 34, Issue 1, pp 33–40 | Cite as

Mathematical modeling of the heating of a fast ignition target by an ion beam

  • O. R. Gasparyan
  • S. Yu. Gus’kov
  • D. V. Il’in
  • V. E. Sherman
  • N. V. Zmitrenko


We develop a BIN computer code for simulating the interaction of a monochromatic ion beam with a plasma, which takes into account changes in the spatial distribution of the heated-plasma temperature. This enables us to calculate the heating of both homogeneous and inhomogeneous plasmas with parameters corresponding to their real spatial distributions at the time of maximum compression of the inertial confinement fusion (ICF) target. We present the results of a numerical simulation using the BIN code for the heating of a homogeneous deuterium–tritium plasma by a short pulse of monochromatic ions at various ion velocity and plasma–electron thermal velocity ratios. We also present the results of calculations for the heating of an inhomogeneous plasma of a non-cryogenic target formed as a beryllium deuteride–tritide shell by beams of light, medium, and heavy ions. As the initial distributions, we use the results of numerical simulations for such a target, precompressed by a laser pulse (carried out at the M. V. Keldysh Institute of Applied Mathematics using the DIANA code). We demonstrate the possibility of forming the central ignitor with the parameters sufficient for igniting the targets by beams of ions with energies E ~ 100 400 MeV/u and specific energy densities of the beam Q ∼ 520 GJ/cm2. The required specific energy density drops with increase in the ion energy; however, due to the increased path length, larger-charge ions have to be used.


inertial confinement fusion fast ignition high-energy ion beam plasma stopping power 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. G. Basov, S. Yu. Gus’kov, and L. P. Feoktistov, J. Sov. Laser Res., 13, 396 (1992).CrossRefGoogle Scholar
  2. 2.
    M. Tabak, J. Hammer, M. E. Glinsky, et al., Phys. Plasmas, 1, 1626 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    S. Yu. Gus’kov and V. E. Sherman, Electronic Scientific Journal “Investigated in Russia”, 113, 1486 (2009) [].
  4. 4.
    S. Yu. Gus’kov, D. V. Il’in, I. Limpouch et al., Plasma Phys. Rep., 36, 473 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    O. R. Gasparyan, S. Yu. Gus’kov, and V. E. Sherman, Electronic Scientific Journal “Investigated in Russia”, 062, 815 (2011) [].
  6. 6.
    N. V. Zmitrenko, V. Ya. Karpov, A. P. Fadeyev et al., Vopr. Atom. Nauki Tekh., Series “Methods and Programs for Numerical Simulation of Mathematical Physics Problems,” 2, 38 (1982).Google Scholar
  7. 7.
    S. Yu. Gus’kov, O. N. Krokhin, and V. B. Rozanov, Nucl. Fusion, 16, 957 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    S. Yu. Gus’kov, D. V. Il’in, and V. E. Sherman, Plasma Phys. Rep., 37, 1020 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    S. Yu. Gus’kov, A. A. Levkovsky, D. V. Il’in et al., Sov. J. Plasma Phys., 17, 30 (1991).Google Scholar
  10. 10.
    B. J. Albright, M. J. Schmitt, J. C. Fernandez, et al., J. Phys.: Conf. Ser., 112, 022029 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    S. Yu. Gus’kov, D. V. Il’in, A. A. Levkovsky, et al., Laser Part. Beams, 16, 129 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • O. R. Gasparyan
    • 1
  • S. Yu. Gus’kov
    • 2
  • D. V. Il’in
    • 1
  • V. E. Sherman
    • 1
  • N. V. Zmitrenko
    • 3
  1. 1.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  2. 2.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.M. V. Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations