Journal of Russian Laser Research

, Volume 33, Issue 4, pp 319–335

Analysis of pulsed discharge characteristics of solid-state switch (IGBT) based 16 kHz repetition rate, 100 W average power copper–HBr lasers

  • R. Biswal
  • P. K. Agrawal
  • G. K. Mishra
  • S. K. Dixit
  • S. V. Nakhe


We present for the first time a comprehensive analysis (both time resolved and time averaged) of the gas-discharge characteristics of a solid-state switch (IGBT) based on high average power (100 W class), high pulse repetition rate (16 kHz) copper–HBr laser under various excitation conditions. We evaluate various discharge-plasma parameters such as the electrical inductance, electrical resistance, active laser-head voltage, active electrical power, pre-pulse electron density, and axial gas temperature by numerical processing of the measured laser head voltage–current waveforms. For the first time, we evaluate fractional losses at various intermediate stages of the circuit elements as well as effective coupling for the laser excitation process during transfer of energy from the wall plug to the laser-discharge plasma. We conclude that irrespective of the capacitive storage input power (Pin), a constant fraction of ~40% of Pin is coupled into the laser-discharge plasma. With a low to moderate specific input power of 0.4–0.7 kW/ℓ, the tube produced 70–110 W average output power at an efficiency of  3.2–2.8%, respectively. The average laser performances at various Pin are correlated to its time-resolved and average gas-discharge parameters such as the inter-pulse electron density and axial gas temperature.


copper–HBr laser IGBT switch pulsed gas discharge electrical power deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. E. Little, (Ed.), Metal Vapour Lasers: Physics, Engineering and Applications, Wiley, New York (1999).Google Scholar
  2. 2.
    C. E. Little and N. V. Sabotinov, (Eds.), Pulsed Metal Vapour Lasers: Physics and Emerging Applications in Industry, Medicine, and Science, Kluwer Academic, Dordrecht (1996).Google Scholar
  3. 3.
    P. Jafarkhani, M. J. Torkamany, S. Dadras, et. al., Nanotechnology, 22, 235703 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    V. T. Karpuhin, M. M. Malikov, T. I. Borodina, et al., High Temp., 49, 679 (2011).CrossRefGoogle Scholar
  5. 5.
    Y. Liu, J. Li, Y. Gao, and X. Yuan, Adv. Mater. Res., 443–444, 986 (2012).CrossRefGoogle Scholar
  6. 6.
    M. S. Fernandes De Lima, F. P. Ladario, D. Neves, and A. E. Diniz, Int. J. Surf. Sci. Eng., 5, 98 (2011).CrossRefGoogle Scholar
  7. 7.
    E. S. Livingstone, Opt. Quantum Electron., 24, 73 (1992).CrossRefGoogle Scholar
  8. 8.
    D. R. Jones, N. V. Sabotinov, A. Maitland, and C. E. Little, Opt. Commun., 94, 289 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    R. Biswal, G. K. Mishra, P. K. Agrawal, et al., Opt. Eng., 50, 084202 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    R. P. Mildren, D. R. Jones, and D. J. W. Brown, J. Phys. D: Appl. Phys., 31, 1812 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    D. R. Jones, S. N. Halliwell, and C. E. Little, Opt. Commun., 111, 394 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    D. R. Jones, A. Maitland, and C. E. Little, Proc. SPIE, 2118, 42 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Isaev, D. R. Jones, C. E. Little, et al., IEEE J. Quantum Electron., QE-33, 919 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov, IEEE J. Quantum Elect., QE-24, 1927 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    S. V. Nakhe, B. S. Rajanikanth, and R. Bhatnagar, Measur. Sci. Tech., 14, 607 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    E. L. Guyadec, P. Countance, G. Bertrand, and C. Peltier, IEEE J. Quantum Elect., QE-35, 1616 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    R. Biswal, P. K. Agrawal, G. K. Mishra, et al., Pramana - J. Phys., 75, 953 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    P. K. Agrawal, S. V. Nakhe, R. Biswal, and J. K. Mittal, Proc. DAE-BRNS NLS-09 (BARC Mumbai, 2010), art. no. MCP-01-016.Google Scholar
  19. 19.
    M. Nehmadi, Z. Kramer, Y. Ifrah, and E. Miron, J. Phys. D: Appl. Phys., 22, 29 (1989).ADSCrossRefGoogle Scholar
  20. 20.
    A. Ohzu, M. Kato, and Y. Maruyama, Jpn J. Appl. Phys., 39, pt. I, No. 9A, 5118 (2000).Google Scholar
  21. 21.
    Blau Pinhas, IEEE J. Quantum Electron., QE-30, 763 (1994).Google Scholar
  22. 22.
    F. A. Gubarev, V. O. Troitskiy, M. V. Trigub, and V. B. Sukhanov, Opt. Commun., 284, 2565 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    L. Little and C. E. Little, Proc. SPIE, 3092, 62 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    R. J. Caraman, D. J. W. Brown, and J. A. Piper, IEEE J. Quantum Electron., QE-30, 1876 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    M. J. Kushner and B. E. Warner, J. Appl. Phys., 54, 2970 (1983).ADSCrossRefGoogle Scholar
  26. 26.
    R. Riva, J. T. Watanuki, and C. L. dos Santos, Proc. SPIE, 4184, 219 (2001).CrossRefGoogle Scholar
  27. 27.
    I. P. Iliev and S. G. Gocheva-Ilieva, Quantum Electron., 40, 479 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    D. R. Jones, A. Maitland, and C. E. Little, Opt. Quantum Electron., 25, 261 (1994).CrossRefGoogle Scholar
  29. 29.
    L. Druckmann, S. Gabay, and I. Smilanski, IEEE Power Modulator Symposium (1992), p. 213.Google Scholar
  30. 30.
    E. L. Guyadec, P. Nouvel, and P. Regnard, IEEE J. Quantum Electron, QE-41, 879 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    D. N. Astadjov and N. K. Vuchkov, J. Phys. D: Appl. Phys., 30, 1507 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • R. Biswal
    • 1
  • P. K. Agrawal
    • 1
  • G. K. Mishra
    • 1
  • S. K. Dixit
    • 1
  • S. V. Nakhe
    • 1
  1. 1.Laser Systems Engineering SectionRaja Ramanna Centre for Advanced TechnologyIndoreIndia

Personalised recommendations