Unitary and non-unitary matrices as a source of different bases of operators acting on hilbert spaces

Article
  • 43 Downloads

Abstract

Columns of d 2 ×N matrices are shown to create different sets of N operators acting on d-dimensional Hilbert space. This construction corresponds to a formalism of the star-product of operator symbols. The known bases are shown to be partial cases of generic formulas derived using d 2 ×N matrices as a source for constructing arbitrary bases. The known examples of the SIC-POVM, MUBs, and the phase-space description of qubit states are considered from the viewpoint of the unified approach developed. Star-product schemes are classified with respect to associated d 2 ×N matrices. In particular, unitary matrices correspond to self-dual schemes. Such self-dual star-product schemes are shown to be determined by dequantizers which do not form the POVM.

Keywords

finite-dimensional Hilbert space basis of operators star-product scheme unitary matrix self-dual scheme 

References

  1. 1.
    V. V. Dodonov and V. I. Man’ko, Phys. Lett. A, 229, 335 (1997).CrossRefMATHADSMathSciNetGoogle Scholar
  2. 2.
    V. I. Man’ko and O. V. Man’ko, J. Exp. Theor. Phys., 85, 430 (1997).CrossRefADSGoogle Scholar
  3. 3.
    S. N. Filippov and V. I. Man’ko, J. Russ. Laser Res., 31, 32 (2010).CrossRefGoogle Scholar
  4. 4.
    A. Vourdas, Rep. Prog. Phys., 67, 267 (2004).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    A. Vourdas, J. Phys. A: Math. Gen., 39, R65 (2006).CrossRefMATHADSMathSciNetGoogle Scholar
  6. 6.
    K. S. Gibbons, M. J. Hoffman, and W. K. Wootters, Phys. Rev. A, 70, 062101 (2004).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    A. B. Klimov, C. Mu˜noz, and J. L. Romero, J. Phys. A: Math. Gen., 39, 14471 (2006).CrossRefMATHADSGoogle Scholar
  8. 8.
    G. Björk, J. L. Romero, A. B. Klimov, and L. L. Sánchez-Soto, J. Opt. Soc. Am. B, 24, 371 (2007).CrossRefADSGoogle Scholar
  9. 9.
    S. N. Filippov and V. I. Man’ko, J. Russ. Laser Res., 30, 129 (2009).CrossRefGoogle Scholar
  10. 10.
    S. N. Filippov and V. I. Man’ko, J. Russ. Laser Res., 30, 224 (2009).CrossRefGoogle Scholar
  11. 11.
    A. Ibort, V. I. Man’ko, G. Marmo, et al., Phys. Scr., 79, 065013 (2009).CrossRefADSGoogle Scholar
  12. 12.
    O. V. Man’ko, V. I. Man’ko, and G. Marmo, J. Phys. A: Math. Gen., 35, 699 (2002).CrossRefMATHADSMathSciNetGoogle Scholar
  13. 13.
    O. V. Man’ko, V. I. Man’ko, G. Marmo, and P. Vitale, Phys. Lett. A, 360, 522 (2007).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    R. L. Stratonovich, Sov. Phys. JETP, 4, 891 (1957).MathSciNetGoogle Scholar
  15. 15.
    J. F. Cariñena, J. M. Garcia-Bondia, and J. C. Várilly, J. Phys. A: Math. Gen., 23, 901 (1990).CrossRefMATHADSGoogle Scholar
  16. 16.
    S. Chaturvedi, E. Ercolessi, G. Marmo, et al., Pramana, 65, 981 (2006).CrossRefADSGoogle Scholar
  17. 17.
    C. M. Caves, C. A. Fuchs, and R. Schack, Phys. Rev. A, 65, 022305 (2002).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, J. Math. Phys., 45, 2171 (2004).CrossRefMATHADSMathSciNetGoogle Scholar
  19. 19.
    D. M. Appleby, S. T. Flammia, and C. A. Fuchs, “The Lie algebraic significance of symmetric informationally complete measurements,” Los Alamos arXiv:1001.0004v1 [quant-ph] (2010).Google Scholar
  20. 20.
    S. N. Filippov and V. I. Man’ko, J. Russ. Laser Res., 31, 211 (2010).CrossRefGoogle Scholar
  21. 21.
    I. D. Ivanović, J. Phys. A: Math. Gen., 14, 3241 (1981).CrossRefADSGoogle Scholar
  22. 22.
    W. K. Wootters, Ann. Phys. (N.Y.), 176, 1 (1987).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    W. K. Wootters and B. D. Fields, Ann. Phys. (N.Y.), 191, 363 (1989).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    O. Albouy and M. R. Kibler, J. Russ. Laser Res., 28, 429 (2007).CrossRefGoogle Scholar
  25. 25.
    S. N. Filippov and V. I. Man’ko, “Mutually unbiased bases: tomography of spin states and starproduct scheme,” Los Alamos arXiv:1008.2675v1 [quant-ph] (2010).Google Scholar
  26. 26.
    R. B. A. Adamson and A. M. Steinberg, Phys. Rev. Lett., 105, 030406 (2010).CrossRefADSGoogle Scholar
  27. 27.
    E. R. Livine, J. Phys. A: Math. Theor., 43, 075303 (2010).CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J. Russ. Laser Res., 24, 507 (2003).CrossRefGoogle Scholar
  29. 29.
    V. I. Man’ko, G. Marmo, A. Simoni, et al., Rhys. Lett. A, 351, 1 (2006).CrossRefMATHADSMathSciNetGoogle Scholar
  30. 30.
    V. I. Man’ko, G. Marmo, A. Simoni, and F. Ventriglia, Open Syst. Inform. Dyn., 13, 239 (2006).CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    V. I. Man’ko, G. Marmo, A. Simoni, et al., Rep. Math. Phys., 61, 337 (2008).CrossRefMATHADSMathSciNetGoogle Scholar
  32. 32.
    S. Weigert, Int. J. Mod. Phys. B, 20, 1942 (2006).CrossRefMATHADSMathSciNetGoogle Scholar
  33. 33.
    D. M. Appleby, Opt. Spectrosc., 103, 416 (2007).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (State University)Moscow RegionRussia
  2. 2.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations