Journal of Russian Laser Research

, Volume 31, Issue 3, pp 211–231 | Cite as

Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics

Article

Abstract

Symmetric informationally complete positive operator valued measures (SIC-POVMs) are studied within the framework of the probability representation of quantum mechanics. A SIC-POVM is shown to be a special case of the probability representation. The problem of SIC-POVM existence is formulated in terms of symbols of operators associated with a star-product quantization scheme. We show that SIC-POVMs (if they do exist) must obey general rules of the star product, and, starting from this fact, we derive new relations on SIC-projectors. The case of qubits is considered in detail, in particular, the relation between the SIC probability representation and other probability representations is established, the connection with mutually unbiased bases is discussed, and comments on the Lie algebraic structure of SIC-POVMs are presented.

Keywords

SIC-POVM probability representation of quantum mechanics star-product-quantization scheme quantum tomography Lie algebraic structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Man’ko, J. Russ. Laser Res., 21, 411 (2000).CrossRefGoogle Scholar
  2. 2.
    M. A. Man’ko, J. Russ. Laser Res., 22, 48 (2001).CrossRefGoogle Scholar
  3. 3.
    M. A. Man’ko, J. Russ. Laser Res., 23, 433 (2002).CrossRefMathSciNetGoogle Scholar
  4. 4.
    M. A. Manko, J. Russ. Laser Res., 27, 405 (2006).CrossRefGoogle Scholar
  5. 5.
    M. A. Man’ko, J. Russ. Laser Res., 22, 168 (2001).CrossRefGoogle Scholar
  6. 6.
    R. Fedele and M. A. Man’ko, Eur. Phys. J. D, 27, 263 (2003).ADSGoogle Scholar
  7. 7.
    M. A. Man’ko, O. V. Man’ko, and V. I. Man’ko, Int. J. Mod. Phys. D, 20, 1399 (2006).MathSciNetGoogle Scholar
  8. 8.
    M. A. Man’ko, J. Russ. Laser Res., 27, 507 (2006).CrossRefGoogle Scholar
  9. 9.
    M. A. Manko, J. Russ. Laser Res., 30, 514 (2009).CrossRefGoogle Scholar
  10. 10.
    M. A. Man’ko and V. I. Man’ko, Found. Phys., DOI  10.1007/s10701-009-9403-9.
  11. 11.
    S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A, 213, 1 (1996).MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    S. Mancini, V. I. Man’ko, and P. Tombesi, Found. Phys., 27, 801 (1997).CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    E. Schrödinger, Ann. Phys., Lpz., 79, 489 (1926).CrossRefGoogle Scholar
  14. 14.
    L. D. Landau, Z. Physik, 45, 430 (1927).CrossRefADSGoogle Scholar
  15. 15.
    J. von Neumann, Göttingen. Nachr., 245 (1927).Google Scholar
  16. 16.
    E. P. Wigner, Phys. Rev., 40, 749 (1932).MATHCrossRefADSGoogle Scholar
  17. 17.
    K. Husimi, Proc. Phys. Math. Soc. Jpn, 22, 264 (1940).MATHGoogle Scholar
  18. 18.
    E. C. G. Sudarshan, Phys. Rev. Lett., 10, 177 (1963).CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    R. J. Glauber, Phys. Rev. Lett., 10, 84 (1963).CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    J. Radon, Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math.-Phys. Kl., 69, 262 (1917).Google Scholar
  21. 21.
    I. M. Gel’fand and G. E. Shilov, Generalized Functions: Properties and Operations, Academic Press, New York (1966), Vol. 5.Google Scholar
  22. 22.
    V. V. Dodonov and V. I. Man’ko, Phys. Lett. A, 229, 335 (1997).MathSciNetADSGoogle Scholar
  23. 23.
    V. I. Man’ko and O. V. Man’ko, J. Exp. Theor. Phys., 85, 430 (1997).CrossRefADSGoogle Scholar
  24. 24.
    S. N. Filippov and V. I. Man’ko, J. Russ. Laser Res., 30, 129 (2009).CrossRefGoogle Scholar
  25. 25.
    S. N. Filippov and V. I. Man’ko, J. Russ. Laser Res., 31, 32 (2010).CrossRefGoogle Scholar
  26. 26.
    S. N. Filippov and V. I. Man’ko, “Distances between quantum states in the tomographic-probability representation,” Los Alamos Arxiv, quant-ph/0911.1414 (2009).Google Scholar
  27. 27.
    A. Ibort, V. I. Man’ko, G. Marmo, et al., Phys. Scr., 79, 065013 (2009).CrossRefADSGoogle Scholar
  28. 28.
    J. Bertrand and P. Bertrand, Found. Phys., 17, 397 (1987).CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    K. Vogel and H. Risken, Phys. Rev. A, 40, 2847 (1989).CrossRefADSGoogle Scholar
  30. 30.
    S. Mancini, V. I. Man’ko, and P. Tombesi, Quantum Semiclass. Opt., 7, 615 (1995).CrossRefADSGoogle Scholar
  31. 31.
    K. Banaszek and K. Wodkiewicz, Phys. Rev. Lett., 76, 4344 (1996).CrossRefADSGoogle Scholar
  32. 32.
    S. Wallentowitz and W. Vogel, Phys. Rev. A, 53, 4528 (1996).CrossRefADSGoogle Scholar
  33. 33.
    S. Mancini, P. Tombesi, and V. I. Man’ko, Europhys. Lett., 37, 79 (1997).CrossRefADSGoogle Scholar
  34. 34.
    M. Asorey, P. Facchi, V. I. Man’ko, et al., Phys. Rev. A, 77, 042115 (2008).CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    M. Asorey, P. Facchi, G. Florio, et al, “Robustness of raw quantum tomography,” Los Alamos Arxiv, quant-ph/1003.1664 (2010).Google Scholar
  36. 36.
    S. T. Ali and E. Prugovečki, J. Math. Phys., 18, 219 (1977).MATHCrossRefADSGoogle Scholar
  37. 37.
    S. T. Ali and E. Prugovečki, Physica A, 89, 501 (1977).CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    S. T. Ali and E. Prugovečki, Int. J. Theor. Phys., 16, 689 (1977).CrossRefGoogle Scholar
  39. 39.
    P. Busch and P. J. Lahti, Found. Phys., 19, 633 (1989).CrossRefMathSciNetADSGoogle Scholar
  40. 40.
    P. Busch, G. Cassinelli, and P. J. Lahti, Rev. Math. Phys., 7, 1105 (1995).MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    P. Busch, M. Grabowski, and P. J. Lahti, Operational Quantum Physics, Lecture Notes in Physics, Springer-Verlag, Berlin (1995), Vol. 31.MATHGoogle Scholar
  42. 42.
    W. Stulpe, Found. Phys., 24, 1089 (1994).CrossRefMathSciNetADSGoogle Scholar
  43. 43.
    W. Stulpe, Int. J. Theor. Phys., 37, 349 (1998).MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    W. Stulpe, “Classical representations of quantum mechanics related to statistically complete observables,” Los Alamos Arxiv, quant-ph/0610122 (2006).Google Scholar
  45. 45.
    J. Kiukas, P. Lahti, and J.-P. Pellonpää, J. Phys. A: Math. Theor., 41, 175206 (2008).CrossRefADSGoogle Scholar
  46. 46.
    J.-P. Amiet and S. Weigert, J. Phys. A: Math. Gen., 32, L269 (1999).MATHCrossRefMathSciNetADSGoogle Scholar
  47. 47.
    R. G. Newton and B. Young, Ann. Phys., 49, 393 (1968).CrossRefADSGoogle Scholar
  48. 48.
    C. M. Caves, “Symmetric informationally complete POVMs,” UNM Information Physics Group internal report, http://info.phys.unm.edu/~caves/reports/infopovm.pdf (1999).
  49. 49.
    C. M. Caves, C. A. Fuchs, and R. Schack, Phys. Rev. A, 65, 022305 (2002).CrossRefMathSciNetADSGoogle Scholar
  50. 50.
    J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, J. Math. Phys., 45, 2171 (2004).MATHCrossRefMathSciNetADSGoogle Scholar
  51. 51.
    D. M. Appleby, S. T. Flammia, and C. A. Fuchs, “The Lie algebraic significance of symmetric informationally complete measurements,” Los Alamos Arxiv, quant-ph/1001.0004 (2010).Google Scholar
  52. 52.
    C. A. Fuchs, “Quantum Bayesianism at the Perimeter,” Los Alamos Arxiv, quant-ph/1003.5182 (2010).Google Scholar
  53. 53.
    R. L. Stratonovich, Sov. Phys. JETP, 4, 891 (1957).MathSciNetGoogle Scholar
  54. 54.
    O. V. Man’ko, V. I. Man’ko, and G. Marmo, J. Phys. A: Math. Gen., 35, 699 (2002).MATHCrossRefMathSciNetADSGoogle Scholar
  55. 55.
    O. V. Man’ko, V. I. Man’ko, G. Marmo, and P. Vitale, Phys. Lett. A, 360, 522 (2007).CrossRefMathSciNetADSGoogle Scholar
  56. 56.
    S. N. Filippov and V. I. Man’ko, J. Russ. Laser Res., 30, 224 (2009).CrossRefGoogle Scholar
  57. 57.
    S. N. Filippov and V. I. Man’ko, Phys. Scr., 79, 055007 (2009).CrossRefADSGoogle Scholar
  58. 58.
    A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag, Berlin, Heidelberg, New York (1991).MATHGoogle Scholar
  59. 59.
    V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Phys. Lett. A, 327, 353 (2004).MATHCrossRefMathSciNetADSGoogle Scholar
  60. 60.
    A. J. Scott and M. Grassl, J. Math. Phys., 51, 042203 (2010).CrossRefADSGoogle Scholar
  61. 61.
    D. M. Appleby, ˚A. Ericsson and C. A. Fuchs, Found. Phys., DOI:  10.1007/s10701-010-9458-7 (2010).
  62. 62.
    S. Weigert, Phys. Rev. Lett., 84, 802 (2000).MATHCrossRefMathSciNetADSGoogle Scholar
  63. 63.
    V. I. Man’ko, G. Marmo, A. Simoni, et al., Rep. Math. Phys., 61, 337 (2008).MATHCrossRefMathSciNetADSGoogle Scholar
  64. 64.
    N. S. Jones and N. Linden, Phys. Rev. A, 71, 012324 (2005).CrossRefMathSciNetADSGoogle Scholar
  65. 65.
    F. R. Gantmacher, The Theory of Matrices, AMS Chelsea Publishing, Providence, RI (1998).Google Scholar
  66. 66.
    P. W. H. Lemmens and J. J. Seidel, J. Algebra, 24, 494 (1973).MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    J. C. Tremain, “Concrete constructions of real equiangular line sets,” Los Alamos Arxiv, math.MG/0811.2779 (2008).Google Scholar
  68. 68.
    S. N. Filippov and V. I. Man’ko, J. Russ. Laser Res., 30, 224 (2009).CrossRefGoogle Scholar
  69. 69.
    O. Albouy and M. R. Kibler, J. Russ. Laser Res., 28, 429 (2007).CrossRefGoogle Scholar
  70. 70.
    D. M. Appleby, “SIC-POVMs and MUBs: geometrical relationships in prime dimension,” Los Alamos Arxiv, quant-ph/0905.1428 (2009).Google Scholar
  71. 71.
    I. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and Their Applications, The Macmillan Company, New York (1963).MATHGoogle Scholar
  72. 72.
    Ya. A. Smorodinskii and M. Huszar, Theor. Math. Phys., 4, 867 (1970).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (State University)Moscow RegionRussia
  2. 2.P. N. Lebedev Physic, Russian Academy of SciencesMoscowRussia

Personalised recommendations