Journal of Russian Laser Research

, Volume 27, Issue 3, pp 185–203

Optical filaments and optical bullets in dispersive nonlinear media

  • L. M. Kovachev
  • L. I. Pavlov
  • L. M. Ivanov
  • D. Y. Dakova
Article

Abstract

We have investigated the evolution of picosecond and femtosecond optical pulses governed by the amplitude vector equation in the optical and UV domains. We have written this equation in different coordinate frames, namely, in the laboratory frame, the Galilean frame, and the moving-in-time frame and have normalized it for the cases of different and equal transverse and longitudinal sizes of optical pulses or modulated optical waves. For optical pulses with a small transverse size and a large longitudinal size (optical filaments), we obtain the well-known paraxial approximation in all the coordinate frames, while for optical pulses with relatively equal transverse and longitudinal sizes (so-called light bullets), we obtain new non-paraxial nonlinear amplitude equations. In the case of optical fields with low intensity, we have reduced the nonlinear amplitude vector equations governing the light-bullet evolution to the linear amplitude equations. We have solved the linear equations using the method of Fourier transform. An unexpected new result is the relative stability of light bullets and the significant decrease in the diffraction enlargement of light bullets with respect to the case of long pulses in the linear propagation regime.

Keywords

optical filaments light bullets vortex solitons dispersive nonlinear media optical confinement paraxial-wave approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett., 13, 479 (1964).CrossRefADSGoogle Scholar
  2. 2.
    V. I. Talanov, Pisma Zh. ’Eksp. Teor. Fiz., 2, 222 (1965).Google Scholar
  3. 3.
    P. L. Kelley, Phys. Rev. Lett., 15, 1005 (1965).CrossRefADSGoogle Scholar
  4. 4.
    A. S. Chirkin, Ph.D. Thesis, M. V. Lomonosov Moscow State University (1967).Google Scholar
  5. 5.
    A. G. Litvak and V. I. Talanov, Izv. Vuzov, Radiofizika, 10, 539 (1967).Google Scholar
  6. 6.
    S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, Zh. ’Eksp. Teor. Fiz., 55, 1430 (1968).Google Scholar
  7. 7.
    M. Born and E. Wolf, Principles of Optics, 6th (corr.) edition, Cambridge University Press (1998).Google Scholar
  8. 8.
    T. Carozzi, R. Karlsson, and J. Bergman, Phys. Rev. E, 61, 2024 (2000).CrossRefADSGoogle Scholar
  9. 9.
    Y. Silberberg, Opt. Lett., 15, 1282 (1990).ADSGoogle Scholar
  10. 10.
    A. B. Blagoeva, S. G. Dinev, A. A. Dreisehuh, and A. Naidenov, IEEE J. Quantum Electron., QE-27, 2060 (1991).CrossRefADSGoogle Scholar
  11. 11.
    L. M. Kovachev, Int. J. Math. & Math. Sci., 18, 949 (2004).MathSciNetCrossRefGoogle Scholar
  12. 12.
    I. H. Malitson, J. Opt. Soc. Am. B, 55, 1205 (1965).CrossRefADSGoogle Scholar
  13. 13.
    A. Yariv, Optical Waves in Crystals, John Wiley & Sons (1984).Google Scholar
  14. 14.
    P. D. Maker and R. W. Terhune, Phys. Rev., 137, 801 (1965).CrossRefADSGoogle Scholar
  15. 15.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Condensed Matter [in Russian], Nauka, Moscow (1978).Google Scholar
  16. 16.
    G. P. Agrawal, Nonliner Fiber Optics, Academic Press (2003).Google Scholar
  17. 17.
    L. M. Kovachev and V. N. Serkin, Izv. Akad. Nauk, Fizika, 53, 1599 (1989).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • L. M. Kovachev
    • 1
  • L. I. Pavlov
    • 2
  • L. M. Ivanov
    • 1
  • D. Y. Dakova
    • 3
  1. 1.Institute of ElectronicsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute for Nuclear Research and Nuclear EnergySofiaBulgaria
  3. 3.Plovdiv UniversityPlovdivBulgaria

Personalised recommendations