Journal of Russian Laser Research

, Volume 27, Issue 2, pp 132–166 | Cite as

Tomographic characteristics of spin states

  • Vladimir N. Chernega
  • Olga V. Man’ko
  • Vladimir I. Man’ko
  • Oleg V. Pilyavets
  • Vadim G. Zborovskii
Article

Abstract

Spin states are studied in the tomographic-probability representation. The standard probability distribution of spin projection onto a direction in space is used instead of the spinor or the density matrix to identify the quantum state. The Shannon entropy and information are associated with the spin tomographic probability. A short review of the probability-theory notions is presented. Analysis of tomographic entropy and tomographic information for the Werner state is considered. The probability representation is used to describe a spin-3/2 particle and two qubits. The connection of tomographic entropy with the von Neumann entropy is discussed.

Keywords

tomographic probability tomographic entropy von Neumann entropy Shannon information spin qubit Werner state entanglement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schrödinger, Ann. Phys. (Leipzig), 79, 489 (1926).MATHGoogle Scholar
  2. 2.
    L. D. Landau, Z. Phys., 45, 430 (1927).MATHCrossRefGoogle Scholar
  3. 3.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1932).Google Scholar
  4. 4.
    I. A. Malkin and V. I. Man’ko, Dynamical Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  5. 5.
    V. V. Dodonov and V. I. Man’ko, Invariants and Evolution of Nonstationary Quantum Systems, Proceedings of the P. N. Lebedev Physical Institute, Nauka, Moscow (1987), Vol. 183 [Nova Science, New York (1989)].Google Scholar
  6. 6.
    E. P. Wigner, Phys. Rev., 40, 749 (1932); E. P. Wigner, in: W. Yourgrau and A. van der Merwe (Eds.), Perspectives in Quantum Theory, Dover, New York (1979).MATHCrossRefADSGoogle Scholar
  7. 7.
    K. Husimi, Proc. Phys. Math. Soc. Jpn, 23, 264 (1940).Google Scholar
  8. 8.
    Y. Kano, J. Math. Phys., 6, 1913 (1965).MathSciNetCrossRefGoogle Scholar
  9. 9.
    E. C. G. Sudarshan, Phys. Rev. Lett., 10, 177 (1963).MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    R. J. Glauber, Phys. Rev. Lett., 10, 84 (1963); Phys Rev, 131, 2766 (1963).MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    J. Bertrand and P. Bertrand, Found. Phys., 17, 397 (1987).MathSciNetCrossRefGoogle Scholar
  12. 12.
    K. Vogel and H. Risken, Phys. Rev. A, 40, 2847 (1989).CrossRefADSGoogle Scholar
  13. 13.
    E. Schrödinger, Naturwissenschaften, 23, 807; 823; 844 (1935).MATHCrossRefGoogle Scholar
  14. 14.
    J. S. Bell, Physics, 1, 195 (1964).Google Scholar
  15. 15.
    S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A, 213, 1 (1996); Found. Phys., 27, 801 (1997).MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    V. V. Dodonov and V. I. Man’ko, Phys. Lett. A, 239, 335 (1997).MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    V. I. Man’ko and O. V. Man’ko, Zh. Éksp. Teor. Fiz., 112, 796 (1997) [JETP, 85, 430 (1997)].MathSciNetGoogle Scholar
  18. 18.
    A. B. Klimov, O. V. Man’ko, V. I. Man’ko, Yu. F. Smirnov, and V. N. Tolstoy, J. Phys. A: Math. Gen., 35, 6101 (2002).MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    O. V. Man’ko, Acta Physica Hungarica B, Ser. Heavy Ion Phys., 19/3–4, 313 (2004).CrossRefGoogle Scholar
  20. 20.
    V. I. Man’ko and S. S. Safonov, Yad. Fiz., 4, 658 (1998).Google Scholar
  21. 21.
    O. V. Man’ko, V. I. Man’ko, and O. V. Pilyavets, J. Russ Laser Res., 26, 429 (2005).CrossRefGoogle Scholar
  22. 22.
    Olga V. Man’ko, V. I. Man’ko, and G. Marmo, J. Phys. A: Math. Gen., 35, 699 (2002).MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    V. I. Man’ko, G. Marmo, A. Simoni, A. Stern, E. C. G. Sudarshan, and F. Ventriglia, Open Systems & Inform. Dynam. (2006, in press).Google Scholar
  24. 24.
    V. I. Man’ko, G. Marmo, A. Simoni, A. Stern, and F. Ventriglia, Phys. Lett. A, 343, 251 (2005).CrossRefADSGoogle Scholar
  25. 25.
    V. I. Man’ko and O. V. Pilyavets, J. Russ Laser Res., 26, 259 (2005).CrossRefGoogle Scholar
  26. 26.
    D. F. Styer, M. S. Balkin, K. M. Becker, et al., Am. J. Phys., 70, 288 (2002).CrossRefADSGoogle Scholar
  27. 27.
    C. E. Shannon, Bell Tech. J., 27, 379 (1948).MathSciNetGoogle Scholar
  28. 28.
    Olga Man’ko and V. I. Man’ko, J. Russ. Laser Res., 18, 407 (1997).Google Scholar
  29. 29.
    M. A. Man’ko, J. Russ. Laser Res., 22, 168 (2001); S. De Nicola, R. Fedele, M. A. Man’ko, and V. I. Man’ko, Eur. Phys. J. B, 36, 385 (2003).CrossRefGoogle Scholar
  30. 30.
    O. V. Man’ko and V. I. Man’ko, J. Russ Laser Res., 25, 115 (2004); Olga V. Man’ko, On Entropy and Information of Quantum States, Contribution to the International Conference “New Trends in Quantum Mechanics. Fundamental Aspects and Applications” (University of Palermo, Italy, November 2005); Open Systems & Inform. Dynam. (2006, in press).CrossRefGoogle Scholar
  31. 31.
    Olga V. Man’ko and Vladimir I. Man’ko, Tomographic Entropy for Spin Systems, Contribution to the XII Central European Workshop on Quantum Optics (Bilkent University, Ankara, June 2005); J. Phys. Conf. Ser. (2006, in press).Google Scholar
  32. 32.
    S. Mancini, V. I. Man’ko, E. V. Shchukin, and P. A. Tombesi, J. Opt. B: Quantum Semiclass. Opt., 5, S333 (2003).CrossRefADSGoogle Scholar
  33. 33.
    V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Phys. Lett. A, 327, 353 (2004).MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    S. V. Kuznetsov, A. V. Kusev, O. V. Man’ko, Acta Physica Hungarica B, Ser. Quantum Electron., 20/1, 11 (2004).CrossRefGoogle Scholar
  35. 35.
    S. V. Kuznetsov, A. V. Kusev, O. V. Man’ko, and N. V. Tcherniega, Izvestiya RAN, Ser. Fiz., 68, 1239 (2004); O. V. Man’ko and N. V. Tcherniega, Izvestiya RAN, Ser. Fiz., 70, 382; 514 (2006).Google Scholar
  36. 36.
    Olga V. Man’ko, V. I. Man’ko, G. Marmo, Anil Shaji, E. C. G. Sudarshan, and F. Zaccaria, Phys. Lett. A, 339, 194 (2005).CrossRefADSGoogle Scholar
  37. 37.
    R. F. Werner, Phys. Rev. A, 40, 4277 (1989).CrossRefADSGoogle Scholar
  38. 38.
    V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Phys. Lett. A, 327, 353 (2004).MathSciNetCrossRefADSGoogle Scholar
  39. 39.
    L. D. Landau and E. M. Lifshits, Theoretical Physics [in Russian], Nauka, Moscow (1989), Vol. 3.Google Scholar
  40. 40.
    R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York (1985).Google Scholar
  41. 41.
    O. V. Man’ko, Talk at the International Workshop “Classical and Quantum Integrable Systems” (January 2005, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia); A. V. Andreev, V. I. Man’ko, O. V. Man’ko, and E. V. Shchukin, Theor. Math. Phys., 146, 140 (2006).Google Scholar
  42. 42.
    A. Peres, Phys. Rev. Lett., 77, 4277 (1996).CrossRefGoogle Scholar
  43. 43.
    P. Horodecki, Phys. Lett. A, 232, 333 (1997).MATHMathSciNetCrossRefADSGoogle Scholar
  44. 44.
    M. A. Man’ko, V. I. Man’ko, and R. Vilela Mendes, A probabilistic operator symbol framework for quantum information, Los Alamos ArXiv quant-ph/0602189 (2006).Google Scholar
  45. 45.
    Walter Rudin, Real and Complex Analysis, McGraw-Hill, New York (1987).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Vladimir N. Chernega
    • 1
  • Olga V. Man’ko
    • 2
  • Vladimir I. Man’ko
    • 2
  • Oleg V. Pilyavets
    • 3
  • Vadim G. Zborovskii
    • 3
  1. 1.Faculty of PhysicsM. V. Lomonosov Moscow State UniversityVorob’evy Gory, MoscowRussia
  2. 2.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudny, Moscow RegionRussia

Personalised recommendations