Journal of Russian Laser Research

, Volume 27, Issue 1, pp 1–32 | Cite as

A q-analog of Racah polynomials and q-algebra SUq(2) in quantum optics

  • R. Álvarez-Nodarse
  • Yu. F. Smirnov
  • R. S. Costas-Santos
Article

Abstract

We study some q-analogs of Racah polynomials and some of their applications in the theory of representation of quantum algebras. Possible implementations in quantum optics are discussed.

Keywords

representation theory deformations quantum groups q-algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Malkin and V. I. Man’ko, Dynamic Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  2. 2.
    J Guerrero, V. I. Man’ko, G. Marmo, and A. Simoni, “Geometrical aspects of the Lie group representation and their optical applications,” J. Russ. Laser Res., 23, 49–80 (2002).CrossRefGoogle Scholar
  3. 3.
    B. Gruber, Yu. F. Smirnov, and Yu. I. Kharitonov, “Quantum algebra U q(gl(3)) and nonlinear optics,” J. Russ. Laser Res., 24, 56–68 (2003).CrossRefGoogle Scholar
  4. 4.
    L. D. Landau and E. M. Lifshits, Quantum Mechanics. Nonrelativistic Theory [in Russian], Fizmatlit, Moscow (2002).Google Scholar
  5. 5.
    R. Askey and R. Wilson, “A set of orthogonal polynomials that generalize Racah coefficients or 6j symbols,” SIAM J. Math. Anal., 10, 1008–1020 (1979).CrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Koekoek and R. F. Swarttouw, “The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue,” Reports of the Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft (1998), No. 98-17.Google Scholar
  7. 7.
    R. Askey and R. Wilson, “Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials,” Mem. Amer. Math. Soc., Providence, Rhode Island, 319 (1985).Google Scholar
  8. 8.
    A. F. Nikiforov and V. B. Uvarov, “Classical orthogonal polynomials in a discrete variable on nonuniform lattices,” Preprint No. 17 of the M. V. Keldysh Institute of Applied Mathematics [in Russian], Moscow (1983).Google Scholar
  9. 9.
    A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics, Springer Verlag, Berlin (1991) [Russian Edition, Nauka, Moscow (1985)].Google Scholar
  10. 10.
    V.G. Drinfel’d, “Quantum groups,” in: Proceedings of the International Congress of Mathematicians (Berkeley 1986), American Mathematical Society, Providence, R. I. (1987), pp. 798–820.Google Scholar
  11. 11.
    L.D. Faddev and L. A. Takhtajan, Lect. Notes Phys., 246, 183 (1986).Google Scholar
  12. 12.
    M. Jimbo, “Quantum R matrix for the generalized Toda system,” Commun. Math. Phys., 102, 537–547 (1986).CrossRefADSMATHMathSciNetGoogle Scholar
  13. 13.
    P. P. Kulish and N. Yu. Reshetikhin, Zapiski Nauchnykh Seminarov LOMI [in Russian], 101 (1981)Google Scholar
  14. 14.
    E. K. Sklyanin, “Some algebraic structures connected with the Yang-Baxter equation,” Funct. Anal. Appl., 16, 263–270 (1983).CrossRefGoogle Scholar
  15. 15.
    A. N. Kirillov and N. Yu. Reshetikhin, LOMI Preprint E-9-88, Leningrad (1988).Google Scholar
  16. 16.
    R. Álvarez-Nodarse, “q-Analog of the vibrational IBM and the quantum algebra SU q(1, 1)” [in Russian], Master’s Thesis, M. V. Lomonosov Moscow State University (November 1992).Google Scholar
  17. 17.
    R. Álvarez-Nodarse and Yu. F. Smirnov, “q-Dual Hahn polynomials on the nonuniform lattice x(s) = [s]q[s + 1]q and the q-algebras SU q(1, 1) and SU q(2),” J. Phys. A: Math. Gen., 29, 1435–1451 (1996).CrossRefADSGoogle Scholar
  18. 18.
    A. A. Malashin, “q-Analog of Racah polynomials on the lattice x(s) = [s]q[s+1]q and its connections with 6j-symbols for the SU q(2) and SU q(1, 1) quantum algebras” [in Russian], Master’s Thesis, M. V. Lomonosov Moscow State University (January 1992).Google Scholar
  19. 19.
    H. Rosengren, “An elementary approach to 6j-symbols (classical, quantum, rational and elliptic),” Los Alamos ArXiv math.CA/0312310 (2003).Google Scholar
  20. 20.
    Yu. F. Smirnov, V. N. Tolstoy, and Yu. I. Kharitonov, “Method of projection operators and the q-analog of the quantum theory of angular momentum. Clebsch-Gordan coefficients and irreducible tensor operators,” Sov. J. Nucl. Phys., 53, 593–605 (1991).Google Scholar
  21. 21.
    Yu. F. Smirnov, V. N. Tolstoy, and Yu. I. Kharitonov, “The projection-operator method and the q-analog of the quantum theory of angular momentum. Racah coefficients, 3j-and 6j-symbols, and their symmetry properties,” Sov. J. Nucl. Phys., 53, 1069–1086 (1991).Google Scholar
  22. 22.
    Yu. F. Smirnov, V. N. Tolstoy, and Yu. I. Kharitonov, “Tree technique and irreducible tensor operators for the SU q(2) quantum algebra. 9j-Symbols,” Sov. J. Nucl. Phys., 55, 1599–1604 (1992).Google Scholar
  23. 23.
    Yu. F. Smirnov, V. N. Tolstoy, and Yu. I. Kharitonov, “The tree technique and irreducible tensor operators for the SU q(2) quantum algebra. The algebra of irreducible tensor operators,” Phys. Atom. Nucl., 56, 690–700 (1993).ADSGoogle Scholar
  24. 24.
    H. T. Koelink, “Askey-Wilson polynomials and the quantum SU(2) group: Survey and applications,” Acta Appl. Math., 44, 295–352 (1996).MATHMathSciNetGoogle Scholar
  25. 25.
    N. Ja. Vilenkin and A. U. Klimyk, Representations of Lie Groups and Special Functions, Kluwer Academic Publishers, Dordrecht (1992), Vols. II, III.Google Scholar
  26. 26.
    R. Álvarez-Nodarse, Polinomios Hipergemétricos y q-Polinomios [in Spanish], Monografías del Seminario García Galdeano, Universidad de Zaragoza, Prensas Universitarias de Zaragoza, Zaragoza, Spain (2003), Vol. 26.Google Scholar
  27. 27.
    N. M. Atakishiyev, M. Rahman, and S. K. Suslov, “On classical orthogonal polynomials,” Constr. Approx., 11, 181–226 (1995).CrossRefMathSciNetGoogle Scholar
  28. 28.
    A. F. Nikiforov and V. B. Uvarov, “Polynomial solutions of hypergeometric-type difference equations and their classification,” Integral Transform. Spec. Funct., 1, 223–249 (1993).MathSciNetGoogle Scholar
  29. 29.
    A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable [in Russian], Nauka, Moscow (1985).Google Scholar
  30. 30.
    R. Álvarez-Nodarse, “Polinomios generalizados y q-polinomios: propiedades espectrales y aplicaciones” [in Spanish], Tesis Doctoral, Universidad Carlos III de Madrid, Madrid (1996).Google Scholar
  31. 31.
    G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press (1990).Google Scholar
  32. 32.
    P. M. Asherova, Yu. F. Smirnov, and V. N. Tolstoi, “Weyl q-coefficients for u q(3) and Racah q-coefficients for su q(2),” Sov. J. Nucl. Phys., 58, 1859–1872 (1996).MathSciNetGoogle Scholar
  33. 33.
    A. A. Malashin, Yu. F. Smirnov, and Yu.I. Kharitonov, Sov. J. Nucl. Phys., 53, 1105–1119 (1995).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • R. Álvarez-Nodarse
    • 1
  • Yu. F. Smirnov
    • 2
  • R. S. Costas-Santos
    • 3
  1. 1.Departamento de Análisis MatemáticoUniversidad de SevillaSevillaSpain
  2. 2.D. V. Skobeltsyn Institute of Nuclear PhysicsM. V. Lomonosov Moscow State UniversityVorob’evy Gory, MoscowRussia
  3. 3.Departamento de MatemáticasE.P.S., Universidad Carlos III de MadridLeganésSpain

Personalised recommendations