Journal of Quantitative Criminology

, Volume 28, Issue 3, pp 509–531 | Cite as

Exploratory Space–Time Analysis of Burglary Patterns

  • Sergio J. Rey
  • Elizabeth A. Mack
  • Julia Koschinsky
Original Paper

Abstract

This paper introduces two new methods for the exploratory analysis of the spatial and temporal dynamics of residential burglary patterns. The first is a conditional spatial Markov chain which considers the extent to which a location’s probability of experiencing a residential burglary in a future period is related to the prevalence of residential burglaries in its surrounding neighborhood in an initial period. The second measure extends this conditional perspective to examine the joint evolution of residential burglary in a location and its surrounding neighborhood. These methods are applied to a case study of residential burglary patterns in Mesa, Arizona over the period October 2005 through December 2009. Strong patterns of spatial clustering of burglary activity are present in each year, and this clustering is found to have an important influence on both the conditional and joint evolution of burglary activity across space and time.

Keywords

Space–time Residential burglary hotspots Markov chain 

Notes

Acknowledgments

This project was supported by Award No. 2009-SQ-B9-K101 awarded by the National Institute of Justice, Office of Justice Programs, US Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice. We gratefully acknowledge Mesa Police Department for sharing their crime data.

References

  1. Andresen M (2006) Crime measures and the spatial analysis of criminal activity. Br J Criminol 46(2):258–285CrossRefGoogle Scholar
  2. Anselin L, Cohen J, Cook D, Gorr W, Tita G (2000) Spatial analyses of crime. Crim Justice 4:213–262Google Scholar
  3. Anselin L, Hudak S (1992) Spatial econometrics in practice: a review of software options. Reg Sci Urban Econ 22(3):509–536CrossRefGoogle Scholar
  4. Baller R, Anselin L, Messner S, Deane G, Hawkins D (2001) Structural covariates of US county homicide rates: incorporating spatial effects. Criminology 39(3):561–588CrossRefGoogle Scholar
  5. Berestycki H, Nadal J (2010) Self-organised critical hot spots of criminal activity. Eur J Appl Math 21:371–399CrossRefGoogle Scholar
  6. Berk R, MacDonald J (2009) The dynamics of crime regimes. Criminology 47(3):971–1008CrossRefGoogle Scholar
  7. Bernasco W, Elffers H (2010) Statistical analysis of spatial crime data. In: Piquero A, Weisburd D (eds) Handbook of quantitative criminology. Springer, Berlin, pp 699–724Google Scholar
  8. Boggs S (1965) Urban crime patterns. Am Sociol Rev 30(6):899–908CrossRefGoogle Scholar
  9. Bowers K, Johnson S (2004) Who commits near repeats? A test of the boost explanation. West Criminol Rev 5(3):12–24Google Scholar
  10. Bowers K, Johnson S (2005) Domestic burglary repeats and space–time clusters. Eur J Criminol 2(1):67–92CrossRefGoogle Scholar
  11. Brantingham P, Brantingham P (eds) (1981) Environmental criminology. Sage Publications, Beverly HillsGoogle Scholar
  12. Brantingham P, Brantingham P (1984) Patterns in crime. Macmillan, New YorkGoogle Scholar
  13. Brantingham P, Brantingham P (1993) Nodes, paths and edges: considerations on the complexity of crime and the physical environment. J Environ Psychol 13(1):3–28CrossRefGoogle Scholar
  14. Brantingham P, Tita G (2008) Offender mobility and crime pattern formation from first principles. In: Liu L, Eck J (eds) Artificial crime analysis systems: using computer simulations and geographic information systems. Idea Press, Hershey, pp 193–208CrossRefGoogle Scholar
  15. Brunsdon C (2001) The comap: exploring spatial pattern via conditional distributions. Comput Environ Urban Syst 25(1):53–68CrossRefGoogle Scholar
  16. Brunsdon C, Corcoran J, Higgs G (2007) Visualising space and time in crime patterns: a comparison of methods. Comput Environ Urban Syst 31(1):52–75CrossRefGoogle Scholar
  17. Buetow T, Chaboya L, O’Toole C, Cushna T, Daspit D, Petersen T, Atabakhsh H, Chen H (2003) A spatio temporal visualizer for law enforcement. Intell Secur Inform 2665:181–194CrossRefGoogle Scholar
  18. Chung W, Chen H, Chaboya L, O’Toole CD, Atabakhsh H (2005) Evaluating event visualization: a usability study of COPLINK spatio-temporal visualizer. Int J Hum Comput Sci 62(1):127–157CrossRefGoogle Scholar
  19. City of Mesa (2011) East valley gang & criminal information fusion center. http://www.mesaaz.gov/police/FusionCenter/Default.aspx
  20. Clarke R, Cornish D (1985) Modeling offenders’ decisions: a framework for research and policy. Crime Justice 6:147–185CrossRefGoogle Scholar
  21. Clarke R, Weisburd D (1994) Diffusion of crime control benefits: observations on the reverse of displacement. Crime Prev Stud 2:165–184Google Scholar
  22. Cohen J, Tita G (1999) Diffusion in homicide: exploring a general method for detecting spatial diffusion processes. J Quant Criminol 15(4):451–493CrossRefGoogle Scholar
  23. Cohen L, Felson M (1979) Social change and crime rate trends: a routine activity approach. Am Sociol Rev 44(4):588–608CrossRefGoogle Scholar
  24. Cornish D, Clarke R (1987) Understanding crime displacement: an application of rational choice theory. Criminology 25(4):933–948CrossRefGoogle Scholar
  25. Eck J, Chainey S, Cameron J, Leitner M, Wilson R (2005) Mapping crime: understanding hot spots. http://eprints.ucl.ac.uk/11291/
  26. Erlanson O (1946) The scene of a sex offence as related to the residence of the offender. Am J Pol Sci 31:338–342Google Scholar
  27. Groff E (2007) Simulation for theory testing and experimentation: an example using routine activity theory and street robbery. J Quant Criminol 23(2):75–103CrossRefGoogle Scholar
  28. Grubesic T, Mack E (2008) Spatio-temporal interaction of urban crime. J Quant Criminol 24(3):285–306CrossRefGoogle Scholar
  29. Hagerstrand T (1970) What about people in regional science?. Pap Reg Sci Assoc 24(1):6–21CrossRefGoogle Scholar
  30. Harries K (1999) Mapping crime: principle and practice. US Dept. of Justice, Office of Justice Programs, National Institute of Justice, Crime Mapping Research Center, Washington, DCGoogle Scholar
  31. Harrower M, Fabrikant S (2008) The role of map animation for geographic visualization. In: Dodge M, McDerby M, Turner M (eds) Geographic visualization: concepts, tools, and applications. John Wiley & Sons, West Sussex, pp 49–66CrossRefGoogle Scholar
  32. Herrnstein R (1990) Rational choice theory: necessary but not sufficient. Am Psychol 45(3):356–367CrossRefGoogle Scholar
  33. Housley A (2011) Mexican gangs maintain permanent lookout bases in Hills of Arizona. http://www.foxnews.com/us/2010/06/22/mexican-gangs-permanent-lookouts-parkland/
  34. Jacquez G (1996) A k-nearest neighbour test for space–time interaction. Stat Med 15(18):1935–1949CrossRefGoogle Scholar
  35. Johnson S, Bernasco W, Bowers KJ, Elffers H, Ratcliffe J, Rengert G (2008) Stable and fluid hotspots of crime: differentiation and identification. Built Environ 34(1):32–45CrossRefGoogle Scholar
  36. Johnson S, Bernasco W, Bowers KJ, Elffers H, Ratcliffe J, Rengert G, Townsley M (2007) Space–time patterns of risk: a cross national assessment of residential burglary victimization. J Quant Criminol 23(3):201–219CrossRefGoogle Scholar
  37. Johnson S, Bowers K (2004) The burglary as clue to the future. Eur J Criminol 1(2):237–255CrossRefGoogle Scholar
  38. Johnson S, Bowers K (2004) The stability of space–time clusters of burglary. Br J Criminol 44:55–65CrossRefGoogle Scholar
  39. Johnson S, Summers L, Pease K (2009) Offender as forager? A direct test of the boost account of victimization. J Quant Criminol 25:181–200CrossRefGoogle Scholar
  40. Jones P, Brantingham P, Chayes L (2010) Statistical models of criminal behavior: the effects of law enforcement actions. Math Models Methods Appl Sci 20:1397–1423CrossRefGoogle Scholar
  41. Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal data. In: Bauzer C, Egenhofer M, Bertino E (eds) Advances in spatial and temporal databases, volume 3633 of lecture notes in computer science. Springer, Heidelberg, pp 364–381Google Scholar
  42. Knox E (1964) The detection of space–time interactions. J R Stat Soc Ser C Appl Stat 13(1):25–30Google Scholar
  43. Krebs J, Davies N (1987) An introduction to behavioural ecology. Blackwell, OxfordGoogle Scholar
  44. Kulldorff M, Hjalmars U (1999) The Knox method and other tests for space–time interaction. Biometrics 55(2):544–552CrossRefGoogle Scholar
  45. Lawton B, Taylor R, Luongo A (2005) Police offices on drug corners in philadelphia, drug crime, and violent crime: intended, diffusion, and displacement impacts. Justice Q 22(4):427–451CrossRefGoogle Scholar
  46. Lersch KM (2007) Space, time and crime. Carolina Academic Press, DurhamGoogle Scholar
  47. Livingston M (2008) Alcohol outlet density and assault: a spatial analysis. Addiction 103(4):619–628CrossRefGoogle Scholar
  48. Lodha S, Verma A (2000) Spatio-temporal visualization of urban crimes on a GIS grid. In: Proceedings of the 8th ACM international symposium on advances in geographic information systems, pp 174–179Google Scholar
  49. MacEachren A, Boscoe F, Haug D, Pickle L (1998) Geographic visualization: designing manipulable maps for exploring temporally varying georeferenced statistics. In: Proceedings of the IEEE symposium on information visualization 1998, pp 87–94Google Scholar
  50. MacEachren A, DiBiase D (1991) Animated maps of aggregate data: conceptual and practical problems. Cartogr Geogr Inf Sci 18(4):221–229CrossRefGoogle Scholar
  51. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2):209–220Google Scholar
  52. Messner S, Anselin L (2004) Spatial analyses of homicide with areal data. In: Goodchild M, Janelle D (eds) Spatially integrated social science. Oxford University Press, New York, pp 127–144Google Scholar
  53. Messner S, Anselin L, Baller R, Hawkins D, Deane G, Tolnay S (1999) The spatial patterning of county homicide rates: an application of exploratory spatial data analysis. J Quant Criminol 15(4):423–450CrossRefGoogle Scholar
  54. Moellering H (1976) The potential uses of a computer animated film in the analysis of geographical patterns of traffic crashes. Accid Anal Prev 8(4):215–227CrossRefGoogle Scholar
  55. Moellering H (1980) The real-time animation of three-dimensional maps. Cartogr Geogr Inf Sci 7(1):67–75CrossRefGoogle Scholar
  56. Murray A, McGuffog I, Western J, Mullins P (2001) Exploratory spatial data analysis techniques for examining urban crime. Br J Criminol 41(2):309–329CrossRefGoogle Scholar
  57. Nakaya T, Yano K (2010) Visualising crime clusters in a space–time cube: an exploratory data-analysis approach using space–time kernel density estimation and scan statistics. Trans GIS 14(3):223–239CrossRefGoogle Scholar
  58. Piquero A, Rengert G (1999) Studying deterrence with active residential burglars. Justice Q 16(2):451–471CrossRefGoogle Scholar
  59. Polvi N, Looman T, Humphries C, Pease K (1991) The time course of repeat burglary victimization. Br J Criminol 31(4):411Google Scholar
  60. Porter J, Purser C (2010) Social disorganization, marriage, and reported crime: a spatial econometrics examination of family formation and criminal offending. J Crim Justice 38(5):942–950CrossRefGoogle Scholar
  61. Ratcliffe J (2000) Aoristic analysis: the spatial interpretation of unspecific temporal events. Int J Geogr Inf Sci 14(7):669–679CrossRefGoogle Scholar
  62. Ratcliffe J (2002) Aoristic signatures and the spatio-temporal analysis of high volume crime patterns. J Quant Criminol 18(1):23–43CrossRefGoogle Scholar
  63. Ratcliffe J (2004) The hotspot matrix: a framework for the spatio-temporal targeting of crime reduction. Police Pract Res 5(1):5–23CrossRefGoogle Scholar
  64. Ratcliffe J (2008) Intelligence-led policing. Willan Publishing, DevonGoogle Scholar
  65. Ratcliffe J (2010) Crime mapping: spatial and temporal challenges. In: Piquero A, Weisburd D (eds) Handbook of quantitative criminology. Springer, Berlin, pp 5–24CrossRefGoogle Scholar
  66. Ratcliffe J, McCullagh M (1999) Hotbeds of crime and the search for spatial accuracy. J Geograph Syst 1(4):385–398CrossRefGoogle Scholar
  67. Ratcliffe J, Rengert G (2008) Near-repeat patterns in Philadelphia shootings. Secur J 21(1):58–76CrossRefGoogle Scholar
  68. Rey S (2001) Spatial empirics for economic growth and convergence. Geogr Anal 33(3):195–214CrossRefGoogle Scholar
  69. Rey S, Janikas M (2006) STARS: space–time analysis of regional systems. Geogr Anal 38(1):67–86CrossRefGoogle Scholar
  70. Rey SJ, Anselin L (2010) PySAL: a python library of spatial analytical methods. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin, pp 175–193CrossRefGoogle Scholar
  71. Richardson B (2011) Fusion center a model for cities to follow. http://eastvalleytribune.com/opinion/columnists/article_4ebb0dc2-3abe-11e0-81f2-001cc4c03286.html
  72. Ross B, Esposito R, Eslocker A (2009) Kidnapping capital of the USA. http://abcnews.go.com/Blotter/story?id=6848672&page=1
  73. Short M, Brantingham P, Bertozzi A, Tita G (2010) Dissipation and displacement of hotspots in reaction-diffusion models of crime. Proc Natl Acad Sci 107(9):3961–3965CrossRefGoogle Scholar
  74. Short M, D’Orsogna M, Brantingham P, Tita G (2009) Measuring and modeling repeat and near-repeat burglary effects. J Quant Criminol 25:325–339CrossRefGoogle Scholar
  75. Short M, D’Orsogna M, Pasour V, Tita G, Brantingham P, Bertozzi A, Chayes L (2008) A statistical model of criminal behavior. Math Models Methods Appl Sci 18(supplement):1249–1267CrossRefGoogle Scholar
  76. Snook B (2004) Individual differences in distance travelled by serial burglars. J Investig Psychol Offender Profiling 1(1):53–66CrossRefGoogle Scholar
  77. Tita G, Cohen J, Engberg J (2005) An ecological study of the location of gang "set space". Soc probl 52:272–299CrossRefGoogle Scholar
  78. Tita G, Ridgeway G (2007) The impact of gang formation on local patterns of crime. J Res Crime Delinq 44(2):208CrossRefGoogle Scholar
  79. Tompson L, Townsley M (2010) (Looking) back to the future: using space–time patterns to better predict the location of street crime. Int J Police Sci Manag 12(1):23–40CrossRefGoogle Scholar
  80. Townsley M (2008) Visualising space time patterns in crime: the hotspot plot. Crime Patterns Anal 1(1):61–74Google Scholar
  81. Townsley M, Homel R, Chaseling J (2000) Repeat burglary victimisation: spatial and temporal patterns. Aust N Z J Criminol 33(1):37–63CrossRefGoogle Scholar
  82. Townsley M, Homel R, Chaseling J (2003) Infectious burglaries. A test of the near repeat hypothesis. Br J Criminol 43(3):615–633Google Scholar
  83. White R (1932) The relation of felonies to environmental factors in Indianapolis. Soc Forces 10:498–509CrossRefGoogle Scholar
  84. Wright R, Decker S (1994) Burglars on the job: streetlife and residential break-ins. Northeastern University Press, St. LouisGoogle Scholar
  85. Wright R, Decker S (1997) Armed robbers in action: stickups and street culture. Northeastern University Press, St. LouisGoogle Scholar
  86. Xie Z, Yan J (2008) Kernel density estimation of traffic accidents in a network space. Comput Environ Urban Syst 32(5):396–406CrossRefGoogle Scholar
  87. Ye X, Wu L (2011) Analyzing the dynamics of homicide patterns in Chicago: ESDA and spatial panel approaches. Appl Geogr 31(2):800–807CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sergio J. Rey
    • 1
  • Elizabeth A. Mack
    • 1
  • Julia Koschinsky
    • 1
  1. 1.GeoDa Center for Geospatial Analysis and Computation, School of Geographical Sciences and Urban PlanningArizona State UniversityTempeUSA

Personalised recommendations