Journal of Quantitative Criminology

, Volume 21, Issue 1, pp 103–123

Detecting Spatial Movement of Intra-Region Crime Patterns Over Time


Many of the traditional measures of the degree to which crime patterns change over space and time have limitations. In particular most are unable to determine any change in spatial crime pattern within an areal unit. Usually studies measure the change in crime levels in contiguous areas (expressed as discrete sub-divisions of a study area), but this can become problematic due to difficulties such as the Modifiable Areal Unit Problem (MAUP). This paper describes a technique developed to allow researchers to examine intra-study region changes in crime patterns between two time periods without the need to aggregate crime counts to within-city areal boundaries. The method presented uses a random point nearest neighbor test combined with a Monte Carlo simulation. The process resolves problems of patterning and the MAUP that are common with a number of spatial displacement and pattern movement studies. This technique is demonstrated with example data from a city-wide police burglary crackdown in the Australian capital.


displacement police crackdown nearest neighbor MAUP point pattern change Australia. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Australian Bureau of Statistics [ABS]2001Recorded Crime Australia 2000Australian Bureau of StatisticsCanberraGoogle Scholar
  2. Bailey, T. C., and Gatrell, A. C. (1995). Interactive Spatial Data Analysis, 2 edn. Longman.Google Scholar
  3. Barr, R., Pease, K. 1990

    Crime placement, displacement, and deflection

    Tonry, M.Morris, N. eds. Crime and Justice: An Annual Review of ResearchUniversity of Chicago PressChicago
    Google Scholar
  4. Berry, W., Jones, H. 1995Investigating spatial patterns of crime through police statistics, crime surveys and census profiles – findings from Dundee housing estatesScot. Geogr. Mag.1117682Google Scholar
  5. Bowers, K. J., Johnson, S. D. 2003Measuring the geographical displacement and diffusion of benefit effects of crime prevention activityJ. Quant. Criminol.19275301Google Scholar
  6. Chilvers, M., and Weatherburn, D. (2001). Do targeted arrests reduce crime? Contemporary Issues in Crime and Justice (NSW Bureau of Crime Statistics and Research), Paper 63, p. 16.Google Scholar
  7. Cromwell, P., Olson, J. N., Avary, D. A. W. 1999

    Decision strategies of residential burglars

    Cromwell, P. eds. In their Own Words: Criminals on Crime2RoxburyLos Angeles
    Google Scholar
  8. Davis, J. C. 1986Statistics and Data Analysis in Geology2John WileyLondonGoogle Scholar
  9. Davis, T. J., Keller, C. P. 1997Modelling uncertainty in natural resource analysis using fuzzy sets and Monte Carlo simulation: Slope stability predictionInt. J. Geogr. Inf Sci11409434Google Scholar
  10. Ebdon, D. 1996Statistics in GeographyBlackwellOxfordGoogle Scholar
  11. Gatrell, A. C., Bailey, T. C., Diggle, P. J., Rowlingson, B. S. 1996Spatial point pattern analysis and its application in geographical epidemiologyTrans. Inst. Br. Geogr.21256274Google Scholar
  12. Green, L. 1995Cleaning up drug hot spots in Oakland, California: The displacement and diffusion effectsJustice Quart.12737754Google Scholar
  13. Hagan, J., Peterson, R. D. 1995

    Criminal inequality in America: Patterns and consequences

    Hagan, J.Peterson, R. D. eds. Crime and InequalityStanford University PressStanford
    Google Scholar
  14. Hakim, C. 1982The social consequences of high unemploymentJ. Social Policy11433467Google Scholar
  15. Hakim, S., Rengert, G. 1981


    Hakim, S.Rengert, G. eds. Crime SpilloverSageBeverly Hills, CA
    Google Scholar
  16. Harries, K. 1999Mapping Crime: Principles and PracticeUS Department of JusticeWashington DCGoogle Scholar
  17. Hesseling, R. 1994

    Displacement: A review of the empirical literature

    Clarke, R. eds. Crime Prevention StudiesCriminal Justice PressNew York
    Google Scholar
  18. Hesseling, R. 1995Theft from cars: Reduced or displaced? EurJ. Criminal Policy Res.37992Google Scholar
  19. Hope, A. C. A. 1968A simplified Monte Carlo significance test procedureJ. R. Stat. Soc. Ser. B30583598Google Scholar
  20. Krimmel, J. T., Mele, M. 1998Investigating stolen vehicle dump sites: An interrupted time series quasi experimentPolicing: An Int. J. Police Strat. Manage.21479489Google Scholar
  21. Langworthy, R. H. 1989Do stings control crime? An evaluation of a police fencing operationJustice Quart.62745Google Scholar
  22. Levine, N. (1999). CrimeStat: A Spatial Statistics Program for the Analysis of Crime Incident Locations, Version 1.1. Ned Levine and Associates, VA and the National Institute of Justice, Washington, DC.Google Scholar
  23. McDowall, D., McCleary, R.,  et al. 1980Interrupted Time Series AnalysisSageThousand Oaks, CAGoogle Scholar
  24. Novak, K. J., Hartman, J. L., Holsinger, A. M., Turner, M. G. 1999Effects of aggressive policing of disorder on serious crimePolicing22171190Google Scholar
  25. Openshaw, S. 1984The modifiable areal unit problemConcepts Tech. Mod. Geogr.3841Google Scholar
  26. Openshaw, S. 1989

    Learning to live with errors in spatial databases

    Goodchild, M.Gopal, S. eds. Accuracy of Spatial DatabasesTaylor and FrancisBristol, PA
    Google Scholar
  27. Ratcliffe, J. H. 2004Geocoding crime and a first estimate of an acceptable minimum hit rateInt. J. Geogr. Inf. Sci.186173Google Scholar
  28. Ratcliffe, J. H. 2001aOn the accuracy of TIGER-type geocoded address data in relation to cadastral and census areal unitsInt. J. Geogr. Inf. Sci.15473485Google Scholar
  29. Ratcliffe, J. H. (2001b). Policing urban burglary. Trends and Issues in Crime and Criminal Justice, paper 248. Australian Institute of Criminology.Google Scholar
  30. Sherman, L. W. 1990

    Police crackdowns: Initial and residual deterrence

    Tonry, M.Morris, N. eds. Crime and Justice: An Annual Review of ResearchUniversity of Chicago PressChicago
    Google Scholar
  31. Sherman, L. W., Gottfredson, D., MacKenzie, D., Eck, J., Reuter, P., Bushway, S. 1998Preventing Crime: What Works, What Doesn’t, What’s PromisingNational Institute of JusticeWashington, DCGoogle Scholar
  32. Sherman, L. W., Shaw, J. W., Rogan, D. P. 1995The Kansas City Gun ExperimentNational Institute of JusticeWashington, DCGoogle Scholar
  33. Town, S. (2002). Crime Displacement, the Perception, Problems, Evidence and Supporting Theory., accessed February 2002, 12 pages.
  34. Unwin, D. J. 1996GIS, spatial analysis and spatial statisticsProg. Human Geogr.20540551Google Scholar
  35. Weatherburn, D., Lind, B.,  et al. 2001The short-run effects of economic adversity on property crime: An Australian case studyAust. New Zealand J. Criminol.34134148Google Scholar
  36. Weisburd, D., Green, L. 1995

    Measuring immediate spatial displacement: Methodological issues and problems

    Eck, J. E.Weisburd, D. eds. Crime and PlaceCriminal Justice PressWashington, DC
    Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Criminal JusticeTemple UniversityPhiladelphiaUSA

Personalised recommendations