Journal of Quantitative Criminology

, Volume 21, Issue 1, pp 1–26 | Cite as

On the Complexity and Accuracy of Geographic Profiling Strategies

  • Brent SnookEmail author
  • Michele Zito
  • Craig Bennell
  • Paul J. Taylor

Geographic profilers have access to a repertoire of strategies for predicting a serial offender’s home location. These strategies range in complexity—some involve more calculations to implement than others—and the assumption often made is that more complex strategies will outperform simpler strategies. In the present study, we tested the relationship between the complexity and accuracy of 11 strategies. Data were crime site and home locations of 16 UK residential burglars who had committed 10 or more crimes each. The results indicated that strategy complexity was not positively related to accuracy. This was also found to be the case across tasks that ranged in complexity (where complexity was determined by the number of crimes used to make a prediction). Implications for police’ policies and procedures, as well as our understanding of human decision-making, are discussed.


geographic profiling complexity accuracy serial burglary CrimeStat decision-making. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aho, A. V., Hopcroft, J. E., Ullman, J. D. 1974The Design and Analysis of Computer AlgorithmsAddison-WesleyReading, MassGoogle Scholar
  2. Ashenfelter, O., Ashmore, D., Lalonde, R. 1995Bordeaux wine vintage quality and the weatherChance8714Google Scholar
  3. Bovet, D. P., Crescenzi, P. 1994Introduction to the Theory of ComplexityPrentice HallEnglewood Cliff, NJGoogle Scholar
  4. Brehmer, B. 1994The psychology of linear judgement modelsActa. Psychol.87137154Google Scholar
  5. Canter, D., Larkin, P. 1993The environmental range of serial rapistsJ. Environ. Psychol.136369Google Scholar
  6. Canter, D. V., Coffey, T., Huntley, M., Missen, C. 2000Predicting serial killers’ home base using a decision support systemJ. Quant. Criminol.16457478Google Scholar
  7. Carter, G., and Polger, P. (1986). A 20-year summary of National Weather Service verification results for temperature and precipitation. Technical Memorandum NWS FCST 31, Washington, DC, National Oceanic and Atmospheric Administration.Google Scholar
  8. Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. 2001Introduction to AlgorithmsMIT PressCambridge, MassGoogle Scholar
  9. Cronbach, L. J., Gleser, G. C. 1965Psychological Tests and Personnel SelectionUniversity of Illinois PressUrbana, ILGoogle Scholar
  10. David, H. A. 1970Order StatisticsJohn Wiley and SonsNew YorkGoogle Scholar
  11. Drezner, Z., Hamacher, H. W. 2002Facility Location: Applications and TheorySpringer-VerlagBerlinGoogle Scholar
  12. Gigerenzer, G. Todd, P. The ABC Research Group.1999Simple Heuristics That Make Us SmartOxford University PressNew YorkGoogle Scholar
  13. Hammond, K. R. 1990Functionalism and illusionism: Can integration be usefully achieved?Hogarth, R. M. eds. Insights in Decision-MakingThe University of Chicago PressChicago22261Google Scholar
  14. Hartmanis, J., Stearns, R. 1965On the computational complexity of algorithmsT. Am. Math. Soc.117285306Google Scholar
  15. Hogarth, R. M. 1980Judgement and ChoiceWileyChichester, UKGoogle Scholar
  16. Hommant, R. J., Kennedy, D. B. 1998Psychological aspects of crime scene profiling: Validity researchCrim. Justice Behav.25319343Google Scholar
  17. Kahneman, D., Tversky, A. 1973On the psychology of predictionPsychol. Rev.80237251Google Scholar
  18. Katz, I. 1974Local convergence in Fermat’s problemMath. Prog.689104Google Scholar
  19. Kocsis, R. N., Irwin, H. J. 1997An analysis of spatial patterns in serial rape, arson, and burglary: The utility of the circle theory of environmental range for psychological profilingPsych. Psychol. Law.4195206Google Scholar
  20. Knuth, D. E. 1973The Art of Computer Programming: Searching and SortingAddison-WesleyReading, MassGoogle Scholar
  21. Kuhn, H. W. 1973A Note on Fermat’s ProblemMath. Prog.498107Google Scholar
  22. Kuhn, H. W., Kuenne, R. E. 1962An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economicsJ. Reg. Sci.42133Google Scholar
  23. Levine, N. Associates2000Crimestat: A Spatial Statistics Program for the Analysis of Crime Incident LocationsNational Institute of JusticeWashington, DCGoogle Scholar
  24. Marascuilo, L. A., McSweeney, M. 1977Nonparametric and Distribution-free Methods for the Social SciencesWadsworthBelmont, CAGoogle Scholar
  25. Newell, A., Simon, H. A. 1972Human Problem SolvingPrentice-HallEnglewood Cliffs, NJGoogle Scholar
  26. Paterson, M. S. (1996). Progress in selection. Proceedings of the 5th Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science 1097, Reykjavik, Iceland, Springer, Berlin, 368–379Google Scholar
  27. Paquette, L., Kida, T. 1988The effect of decision strategy and task complexity on decision performanceOrgan. Behav. Hum. Decis. Process.41128142Google Scholar
  28. Payne, J. W., Bettman, J. R., Johnson, E. J. 1988Adaptive strategy selection in decision makingJ. Exp. Psychol.: Hum. Percept. Perform.111427Google Scholar
  29. Payne, J. W., Bettman, J. R., Johnson, E. J. 1993The Adaptive Decision-MakerCambridge University PressCambridge, MassGoogle Scholar
  30. Rossmo, K. D. 2000Geographic ProfilingCRC PressBoca RatonGoogle Scholar
  31. Snook, B., Canter, D. V., Bennell, C. 2002Predicting the home location of serial offenders: A preliminary comparison of the accuracy of human judges with a geographic profiling systemBehav. Sci. Law.20110Google Scholar
  32. Snook, B., Taylor, P. J., Bennell, C. 2004Geographic profiling: The fast, frugal and accurate wayAppl. Cogn. Psychol.18105121Google Scholar
  33. Swets, J. A., Dawes, R. M., Monahan, J. 2000Psychological science can improve diagnostic decisionsPsychol. Sci. Pub. Int.1126Google Scholar
  34. Tamura, M., and Suzuki, M. (1997, July). Criminal profiling research on serial arson: Examinations of circle hypothesis estimating offender’s residential area. In Reports of the National Research Institute of Police Science, Research on Prevention of Crime and Delinquency 38: 13–25.Google Scholar
  35. Tang, P., Tak, P. 1989Table-driven implementation of the exponential function in the IEEE floating-point arithmeticACM. T. Math. Software.15144157Google Scholar
  36. Taylor, P. J., Bennell, C., Snook, B. 2002Problems of classification in investigative psychologyJajuga, K.Sokolowski, A.Bock, H. H. eds. Classification, Clustering, and Data Analysis: Recent Advances and ApplicationsSpringerHeidelberg479487Google Scholar
  37. Turing, A. M. 1936On computable numbers, with an application to the EntscheidungsproblemProc. London Math. Soc.2230265Google Scholar
  38. Warren, J., Reboussin, R., Hazelwood, R. R., Cummings, A., Gibbs, N., Trumbetta, S. 1998Crime scene and distance correlates of serial rapeJ. Quant. Criminol.143559Google Scholar
  39. Weiszfeld, E. 1936Sur le Point pour lequel la somme des distances de n points donnes est minimumTohoku. Math. J.43355386Google Scholar
  40. Wesolowsky, G. O. 1993The Weber problem: History and perspectivesLocation Sci.1523Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Brent Snook
    • 1
    Email author
  • Michele Zito
    • 2
  • Craig Bennell
    • 3
  • Paul J. Taylor
    • 4
  1. 1.Psychology Department Science BuildingMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  3. 3.Department of PsychologyCarleton UniversityOttawaCanada
  4. 4.School of PsychologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations