Advertisement

Journal of Psycholinguistic Research

, Volume 48, Issue 1, pp 243–256 | Cite as

Core Semantic Links or Lexical Associations: Assessing the Nature of Responses in Word Association Tasks

  • Leticia VivasEmail author
  • Laura Manoiloff
  • Adolfo M. García
  • Francisco Lizarralde
  • Jorge Vivas
Article

Abstract

The processes tapped by the widely-used word association (WA) paradigm remain a matter of debate: while some authors consider them as driven by lexical co-occurrences, others emphasize the role of meaning-based connections. To test these contrastive hypotheses, we analyzed responses in a WA task in terms of their normative defining features (those describing the object denoted by the cue word). Results indicate that 72.5% of the responses had medium-to-high coincidence with such defining semantic features. Moreover, 75.51% of responses had medium-to-high values of Relevance (a measure of the importance of the feature for construing a given concept). Furthermore, most responses (62.7%) referred to elements of the situation in which the concept usually appears, followed by sensory properties (e.g., color) of the denoted object (27.86%). These results suggest that the processes behind WA tasks involve a reactivation of the cue item’s semantic properties, particularly those most relevant to its core meaning.

Keywords

Word association Semantic features Semantic relation Associative relations 

Notes

Acknowledgements

This work was partially supported by the National Scientific and Technical Research Council (CONICET), Science and Technique Secretariat (SECyT) of the National University of Mar del Plata (Grant 15/H209), National Agency of Scientific and Technical Promoting (ANPCYT) (Grant PICT 2015-0983) and Science and Technique Secretariat of the National University Córdoba (Grant Resolution 2254/07 and 3182/07).

Compliance with Ethical Standards

Conflict of interest

The Authors declare that they have no conflict of interest.

References

  1. Barbón, A., & Cuetos, F. (2006). Efectos de la Edad de Adquisición en tareas de categorización semántica. Psicológica, 27, 207–223.Google Scholar
  2. Barsalou, L. (2003). Situated simulation in the human conceptual system. Language and Cognitive Processes, 18, 513–562.  https://doi.org/10.1080/01690960344000026.CrossRefGoogle Scholar
  3. Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. De Vega, A. M. Glenberg, & A. C. Graesser (Eds.), Symbols, embodiment, and meaning (pp. 245–283). Oxford: Oxford University Press.CrossRefGoogle Scholar
  4. Borghi, A. M., & Caramelli, N. (2003). Situation bounded conceptual organization in children: from action to spatial relations. Cognitive Development, 18, 49–60.  https://doi.org/10.1016/S0885-2014(02)00161-2.CrossRefGoogle Scholar
  5. Bozeat, S., Lambon Ralph, M. A., Patterson, K., Garrard, P., & Hodges, J. R. (2000). Non-verbal semantic impairment in semantic dementia. Neuropsychologia, 38, 1207–1215.  https://doi.org/10.1016/S0028-3932(00)00034-8.CrossRefGoogle Scholar
  6. Buchanan, L., Westbury, C., & Burgess, C. (2001). Characterizing the neighborhood: Semantic neighborhood effects in lexical decision and naming. Psychonomic Bulletin & Review, 8, 531–544.  https://doi.org/10.3758/BF03196189.CrossRefGoogle Scholar
  7. Bueno, S., & Frenck-Mestre, C. (1999). Rapid activation of the lexicon: A further investigation with behavioral and computational results. Brain and Language, 81, 120–130.  https://doi.org/10.1006/brln.2001.2511.CrossRefGoogle Scholar
  8. Burgess, C. (1998). From simple associations to the building blocks of language: Modeling meaning in memory with the HAL model. Behavior Research Methods, Instruments, & Computers, 30, 188–198.  https://doi.org/10.3758/BF03200643.CrossRefGoogle Scholar
  9. Church, K. W., & Hanks, P. (1990). Word association norms, mutual information, and lexicography. Journal of Computational Linguistics, 16, 22–29.Google Scholar
  10. Colangelo, A., Stephenson, K., Westbury, C., & Buchanan, L. (2003). Word associations in deep dyslexia. Brain and Cognition, 53(2), 166–170.  https://doi.org/10.1016/S0278-2626(03)00102-7.CrossRefGoogle Scholar
  11. Cycowicz, Y. M., Friedman, D., Rothstein, M., & Snodgrass, J. G. (1997). Picture naming by young children: Norms for name agreement, familiarity, and visual complexity. Journal of Experimental Child Psychology, 65(2), 171–237.  https://doi.org/10.1006/jecp.1996.2356.CrossRefGoogle Scholar
  12. De Deyne, S., & Storms, G. (2008). Word associations: Network and semantic properties. Behavior Research Methods, 40(1), 213–231.  https://doi.org/10.3758/BRM.40.1.213.CrossRefGoogle Scholar
  13. Deese, J. (1966). The structure of associations in language and thought. Baltimore: The Johns Hopkins Press.Google Scholar
  14. Estes, Z., Golonka, S., & Jones, L. L. (2011). Thematic thinking. The apprehension and consequences of thematic relations. Psychology of Learning and Motivation, 54, 249–294.  https://doi.org/10.1016/B978-0-12-385527-5.00008-5.CrossRefGoogle Scholar
  15. Fernández, A., Diez, E., Alonso, M. A., & Beato, M. S. (2004). Free-association norms for the Spanish names of the Snodgrass and Vanderwart pictures. Behavior Research Methods, 36(3), 577–583.  https://doi.org/10.3758/bf03195604.Google Scholar
  16. Ferrand, L., & Alario, F. X. (1998). French word association norms for 366 names of objects. L’Année Psychologique, 98, 659–709.CrossRefGoogle Scholar
  17. Ferrand, L., & New, B. (2003). Semantic and associative priming in the mental lexicon. In P. Bonin (Ed.), the mental lexicon (pp. 25–43). New York: Nova Science Publishers.Google Scholar
  18. Goldstein, K. (1936). The significance of the frontal lobes for mental performances. Journal of Neurology and Psychopathology, 17, 27–40.CrossRefGoogle Scholar
  19. Goldstein, K. (1948). Language and language disturbance: Aphasic symptom complexes and their significance for medicine and the theory of language. New York: Grune & Stratton.Google Scholar
  20. Golonka, S., & Estes, Z. (2009). Thematic relations affect similarity via commonalities. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35(6), 1454–1464.  https://doi.org/10.1037/a0017397.CrossRefGoogle Scholar
  21. Gordon, R. (Ed.). (2005). Ethnologue: Languages of the World, décimo quinta edición. Dallas: SIL International.Google Scholar
  22. Gruenenfelder, T. M., Recchia, G., Rubin, T., & Jones, M. (2016). Graph-Theoretic properties of networks based on word association norms: Implications for models of lexical semantic memory. Cognitive Science, 40, 1460–1495.  https://doi.org/10.1111/cogs.12299.CrossRefGoogle Scholar
  23. Guida, A., & Lenci, A. (2009). Semantic properties of word associations to Italian verbs. Italian Journal of Linguistics, 19(2), 293–326.Google Scholar
  24. Halliday, M. A. K., & Matthiessen, C. (2004). An introduction to functional grammar (3rd ed.). London: Arnold.Google Scholar
  25. Halliday, M. A. K., & Matthiessen, C. (2014). Halliday’s introduction to functional grammar (4th ed.). New York: Routledge.CrossRefGoogle Scholar
  26. Hare, M., Jones, M., Thomson, C., Kelly, S., & McRae, K. (2009). Activating event knowledge. Cognition, 111, 151–167.  https://doi.org/10.1016/j.cognition.2009.01.009.CrossRefGoogle Scholar
  27. Head, H. (1926). Our knowledge of aphasia. Lancet, 2, 814–815.Google Scholar
  28. Hutchison, K. A. (2003). Is semantic priming due to association strength or feature overlap? A microanalytic review. Psychonomic Bulletin & Review, 10, 785–813.  https://doi.org/10.3758/BF03196544.CrossRefGoogle Scholar
  29. Jackson, R. L., Hoffman, P., Pobric, G., & Lambon Ralph, M. (2015). The nature and neural correlates of semantic association versus conceptual similarity. Cerebral Cortex.  https://doi.org/10.1093/cercor/bhv003.Google Scholar
  30. Jeffries, E., & Lambon Ralph, M. A. (2006). Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain, 129, 2132–2147.  https://doi.org/10.1093/brain/awl153.CrossRefGoogle Scholar
  31. Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 2, 241–254.  https://doi.org/10.1007/BF02289588.CrossRefGoogle Scholar
  32. Joodens, S., & Becker, S. (1997). The long and short of semantic priming effects in lexical decision. Journal of Experimental Psychology: Leaning, Memory and Cognition, 23, 1083–1105.  https://doi.org/10.1037/0278-7393.23.5.1083.Google Scholar
  33. Kalénine, S., Peyrin, S., Pichat, C., Segebarth, C., Bonthoux, F., & Baciu, M. (2009). The sensory-motor specificity of taxonomic and thematic conceptual relations: A behavioral and fMRI study. Neuroimage, 44, 1152–1162.  https://doi.org/10.1016/j.neuroimage.2008.09.043.CrossRefGoogle Scholar
  34. Kang, B. (2018). Collocation and word association: Comparing collocation measuring methods. International Journal of Corpus Linguistics, 23, 85–113.CrossRefGoogle Scholar
  35. Kintsch, W. (2001). Predication. Cognitive Science, 25, 173–202.  https://doi.org/10.1016/S0364-0213(01)00034-9.CrossRefGoogle Scholar
  36. Kotz, S. A., Cappa, S. F., von Cramon, D. Y., & Friederici, A. D. (2002). Modulation of the lexical-semantic network by auditory semantic priming: An event-related functional MRI study. Neuroimage, 17, 1761–1772.  https://doi.org/10.1006/nimg.2002.1316.CrossRefGoogle Scholar
  37. Levelt, W. (1989). Speaking: From intention to articulation. Boston: MIT Press.Google Scholar
  38. Liceras, J. M. (2001). La teoría lingüística y la composición nominal del español y del inglés. In P. Fernández Nistal & J. M. Bravo (Eds.), Pathways in translation. Valladolid: S.A.E. University of Valladolid.Google Scholar
  39. Lucas, M. (2000). Semantic priming without association: A meta-analytic review. Psychonomic Bulletin & Review, 7, 618–630.  https://doi.org/10.3758/BF03212999.CrossRefGoogle Scholar
  40. Luna, F. G., Marino, J., Darío Silva, J., & Acosta, A. (2016). Normas de asociación léxica e índices psicolingüísticos de 407 palabras en español en una muestra latinoamericana. Psicológica, 37, 1–14.Google Scholar
  41. Manoiloff, L., Artstein, M., Canavoso, M., Fernández, L., & Segui, J. (2010). Expanded norms for 400 experimental pictures in an Argentinean Spanish speaking population. Behavior Research Methods, 42(2), 452–460.  https://doi.org/10.3758/BRM.42.2.452.CrossRefGoogle Scholar
  42. Martínez-Cuitiño, M., Barreyro, J. P., Wilson, M., & Jaichenco, V. (2015). Nuevas normas semánticas y de tiempos de latencia para un set de 400 dibujos en español. Interdisciplinaria, 32(2), 289–305.Google Scholar
  43. McNamara, T. P. (2005). Semantic priming: Perspectives from memory and word recognition. New York: Psychology Press.CrossRefGoogle Scholar
  44. McRae, K., & Boisvert, S. (1998). Automatic semantic similarity priming. Journal of Experimental Psychology. Learning, Memory, and Cognition, 24, 558–572.  https://doi.org/10.1037/0278-7393.24.3.558.CrossRefGoogle Scholar
  45. McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37(4), 547–559.  https://doi.org/10.3758/BF03192726.CrossRefGoogle Scholar
  46. McRae, K., Khalkhali, S., & Hare, M. (2012). Semantic and associative relations: Examining a tenuous dichotomy. In V. F. Reyna, S. B. Chapman, M. R. Dougherty, & J. Confrey (Eds.), The adolescent brain: Learning, reasoning, and decision making (pp. 39–66). Washington, DC: APA.CrossRefGoogle Scholar
  47. Meara, P. (2009). Connected words: Word associations and second language vocabulary acquisition (Vol. 24). Amsterdam: John Benjamins Publishing.CrossRefGoogle Scholar
  48. Montefinese, M., Ambrosini, E., Fairfield, B., & Mammarella, N. (2014). Semantic significance: a new measure of feature salience. Memory and Cognition, 42(3), 355–369.  https://doi.org/10.3758/s13421-013-0365-y.CrossRefGoogle Scholar
  49. Moss, H., & Older, L. (1996). Birkbeck word association norms. East Sussex: Psychology Press.Google Scholar
  50. Nelson, D. L., McEvoy, C. L., & Dennis, S. (2000). What is free association and what does it measure? Memory and Cognition, 28(6), 887–899.  https://doi.org/10.3758/BF03209337.CrossRefGoogle Scholar
  51. Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1998). The University of South Florida word association, rhyme, and word fragment norms. http://web.usf.edu/FreeAssociation/. Accessed Mar 2010.
  52. Piera, C. (1995). On compounding in English and Spanish. In H. Campos, & P. Kempchinsky (Eds.), Evolution and revolution in linguistic theory (pp. 302–315). Washington: Georgetown University Press.Google Scholar
  53. Plaut, D.C. (1995). Semantic and associative priming in a distributed attractor network. In Proceedings of the 17th annual conference of the cognitive science society (pp. 37–42). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  54. Postman, L., & Keppel, G. (1970). Norms of word association. London: Academic Press.Google Scholar
  55. Santos, A., Chaigneau, S. E., Simmons, W. K., & Barsalou, L. W. (2011). Property generation reflects word association and situated simulation. Language and cognition, 3(1), 83–119.  https://doi.org/10.1515/LANGCOG.2011.004.CrossRefGoogle Scholar
  56. Sartori, G., Lombardi, L., & Mattiuzzi, L. (2005). Semantic relevance best predicts normal and abnormal name retrieval. Neuropsychologia, 43, 754–770.  https://doi.org/10.1016/j.neuropsychologia.2004.08.001.CrossRefGoogle Scholar
  57. Sass, K., Sachs, O., Krach, S., & Kircher, T. (2009). Taxonomic and thematic categories: Neural correlates of categorization in an auditory-to-visual priming task using fMRI. Brain Research, 1270, 78–87.  https://doi.org/10.1016/j.brainres.2009.03.013.CrossRefGoogle Scholar
  58. Schwartz, M. F., Kimberg, D. Y., Walker, G. M., Brecher, A., Faseyitan, O. K., Dell, G. S., et al. (2011). Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain. PNAS, 108, 8520–8524.  https://doi.org/10.1073/pnas.1014935108.CrossRefGoogle Scholar
  59. Shelton, J. R., & Martin, R. C. (1992). How semantic is automatic semantic priming? Journal of Experimental Psychology. Learning, Memory, and Cognition, 18(6), 1191–1210.CrossRefGoogle Scholar
  60. Simmons, W. K., Hamann, S. B., Harenski, C. N., Hu, X. P., & Barsalou, L. W. (2008). fMRI evidence for word association and situated simulation in conceptual processing. Journal of Physiology, 102, 106–119.Google Scholar
  61. Vivas, J., Vivas, L., Comesaña, A., García Coni, A., & Vorano, A. (2017). Spanish semantic feature production norms for 400 concrete concepts. Behavior Research Methods, 49(3), 1095–1106.  https://doi.org/10.3758/s13428-016-0777-2.CrossRefGoogle Scholar
  62. Walde, S., Melinger, A., Roth, M., & Weber, A. (2008). An empirical characterization of response types in German association norms. Research on Language and Computation, 6(2), 205–238.  https://doi.org/10.1007/s11168-008-9048-4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Psychology Faculty, Institute of Basic and Applied Psychology and TechnologyNational University of Mar del PlataMar del Plata, Buenos AiresArgentina
  2. 2.National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
  3. 3.Cognitive Psychology of Language and Psycholinguistics Research Group, Laboratory of Cognitive Psychology, CIPSINational University of CórdobaCórdobaArgentina
  4. 4.Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO FoundationFavaloro UniversityBuenos AiresArgentina
  5. 5.Faculty of EducationNational University of Cuyo (UNCuyo)MendozaArgentina
  6. 6.Faculty of Engineering–Artificial Intelligence Applied to Engineering Research GroupNational University of Mar del PlataMar del Plata, Buenos AiresArgentina

Personalised recommendations