Advertisement

Journal of Psycholinguistic Research

, Volume 48, Issue 1, pp 145–161 | Cite as

Use of Prosocial Word Enhances the Processing of Language: Frequency Domain Analysis of Human EEG

  • Shashikanta Tarai
  • Rupsha Mukherjee
  • Quais Ain Qurratul
  • Bikesh Kumar Singh
  • Arindam BitEmail author
Article
  • 297 Downloads

Abstract

Use of prosocial language enhances human cooperation and harmony. Previous research has shown that talking about helping, sharing and giving to others creates positive impression on others, by which individuals and governments gain public approval. So far, the value judgement of approval and disapproval in terms of prosocial or antisocial has not been investigated in the domain of neuroscience of language. Here, the influence of prosocial words towards neural adaptability for greater acceptance is examined using behavioural response mapping with electroencephalography activities of human brain. The prosocial and antisocial words employing correct and incorrect set of sentences in English are presented to participants for performing grammatical judgement task. Our results show that processing of antisocial word requires larger neurocognitive resources as compared to prosocial one, which is corroborated with our behavioural response time suggesting higher response time for antisocial than prosocial words.

Keywords

Prosocial words Antisocial words Human cooperation Language processing Response time Response accuracy EEG ERP 

Notes

Acknowledgements

Funding was provided by Seed Grant, NIT Raipur (Grant No. NITRR/SeedGrant/2016-17/009), Department of Science and Technology, Government of West Bengal (IN) (Grant No. SERB/ECR/00015).

References

  1. Adolphs, R., Baron-Cohen, S., & Tranel, D. (2002). Impaired recognition of social emotions following amygdala damage. Journal of Cognitive Neuroscience, 14(8), 1264–1274.PubMedCrossRefGoogle Scholar
  2. Aftanas, L., Varlamov, A., Pavlov, S., Makhnev, V., & Reva, N. (2001). Event-related synchronization and desynchronization during affective processing: emergence of valence-related time-dependent hemispheric asymmetries in theta and upper alpha band. International Journal of Neuroscience, 110(3–4), 197–219.PubMedCrossRefGoogle Scholar
  3. Augustine, J. R. (1996). Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Reviews, 22(3), 229–244.PubMedCrossRefGoogle Scholar
  4. Barrett, L. F., & Kensinger, E. A. (2010). Context is routinely encoded during emotion perception. Psychological Science, 21(4), 595–599.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barrett, L. F., Lindquist, K. A., & Gendron, M. (2007). Language as context for the perception of emotion. Trends in Cognitive Sciences, 11(8), 327–332.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Borg, J. S., Hynes, C., Van Horn, J., Grafton, S., & Sinnott-Armstrong, W. (2006). Consequences, action, and intention as factors in moral judgments: An fMRI investigation. Journal of Cognitive Neuroscience, 18(5), 803–817.CrossRefGoogle Scholar
  7. Cohn, M. A., Mehl, M. R., & Pennebaker, J. W. (2004). Linguistic markers of psychological change surrounding, September 11, 2001. Psychological Science, 15(10), 687–693.PubMedCrossRefGoogle Scholar
  8. Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407.CrossRefGoogle Scholar
  9. Collins, A. M., & Quillian, M. R. (1972). How to make a language user. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 309–351). New York: Academic Press.Google Scholar
  10. Demb, J. B., Desmond, J. E., Wagner, A. D., Vaidya, C. J., Glover, G. H., & Gabrieli, J. D. (1995). Semantic encoding and retrieval in the left inferior prefrontal cortex: A functional MRI study of task difficulty and process specificity. Journal of Neuroscience, 15(9), 5870–5878.PubMedCrossRefGoogle Scholar
  11. Dillon, D. G., Cooper, J. J., Grent, T., Woldorff, M. G., & LaBar, K. S. (2006). Dissociation of event-related potentials indexing arousal and semantic cohesion during emotional word encoding. Brain and Cognition, 62(1), 43–57.PubMedCrossRefGoogle Scholar
  12. Eisenberg, N., Hofer, C., Sulik, M. J., & Liew, J. (2014). The development of prosocial moral reasoning and a prosocial orientation in young adulthood: Concurrent and longitudinal correlates. Developmental Psychology, 50(1), 58.PubMedCrossRefGoogle Scholar
  13. Eisenberg, N., Lennon, R., & Roth, K. (1983). Prosocial development: A longitudinal study. Developmental Psychology, 19(6), 846.CrossRefGoogle Scholar
  14. Ensor, R., & Hughes, C. (2005). More than talk: Relations between emotion understanding and positive behaviour in toddlers. British Journal of Developmental Psychology, 23(3), 343–363.CrossRefGoogle Scholar
  15. Estes, Z., & Verges, M. (2008). Freeze or flee? Negative stimuli elicit selective responding. Cognition, 108(2), 557–565.PubMedCrossRefGoogle Scholar
  16. Fiske, S. T., Cuddy, A. J., & Glick, P. (2007). Universal dimensions of social cognition: Warmth and competence. Trends in Cognitive Sciences, 11(2), 77–83.PubMedCrossRefGoogle Scholar
  17. Friederici, A. D., Hahne, A., & Saddy, D. (2002). Distinct neurophysiological patterns reflecting aspects of syntactic complexity and syntactic repair. Journal of Psycholinguistic Research, 31(1), 45–63.PubMedCrossRefGoogle Scholar
  18. Frimer, J. A., Aquino, K., Gebauer, J. E., Zhu, L. L., & Oakes, H. (2015). A decline in prosocial language helps explain public disapproval of the US Congress. Proceedings of the National Academy of Sciences, 112(21), 6591–6594.CrossRefGoogle Scholar
  19. Girard, L. C., Pingault, J. B., Doyle, O., Falissard, B., & Tremblay, R. E. (2017). Expressive language and prosocial behaviour in early childhood: Longitudinal associations in the UK Millennium Cohort Study. European Journal of Developmental Psychology, 14(4), 381–398.CrossRefGoogle Scholar
  20. Gross, J. T., Stern, J. A., Brett, B. E., & Cassidy, J. (2017). The multifaceted nature of prosocial behavior in children: Links with attachment theory and research. Social Development, 24, 661.CrossRefGoogle Scholar
  21. Haidt, J. (2001). The emotional dog and its rational tail: A social intuitionist approach to moral judgment. Psychological Review, 108(4), 814.PubMedCrossRefGoogle Scholar
  22. Hare, B. (2017). Survival of the friendliest: Homo sapiens evolved via selection for prosociality. Annual Review of Psychology, 68, 155–186.PubMedCrossRefGoogle Scholar
  23. Haruno, M., & Frith, C. D. (2010). Activity in the amygdala elicited by unfair divisions predicts social value orientation. Nature Neuroscience, 13(2), 160–161.PubMedCrossRefGoogle Scholar
  24. Jansari, A., Tranel, D., & Adolphs, R. (2000). A valence-specific lateral bias for discriminating emotional facial expressions in free field. Cognition and Emotion, 14(3), 341–353.CrossRefGoogle Scholar
  25. Kacewicz, E., Pennebaker, J. W., Davis, M., Jeon, M., & Graesser, A. C. (2014). Pronoun use reflects standings in social hierarchies. Journal of Language and Social Psychology, 33(2), 125–143.CrossRefGoogle Scholar
  26. Kanske, P., & Kotz, S. A. (2007). Concreteness in emotional words: ERP evidence from a hemifield study. Brain Research, 1148, 138–148.PubMedCrossRefGoogle Scholar
  27. Kensinger, E. A., & Schacter, D. L. (2006). Amygdala activity is associated with the successful encoding of item, but not source, information for positive and negative stimuli. Journal of Neuroscience, 26(9), 2564–2570.PubMedCrossRefGoogle Scholar
  28. Kissler, J., Herbert, C., Winkler, I., & Junghofer, M. (2009). Emotion and attention in visual word processing: An ERP study. Biological Psychology, 80(1), 75–83.PubMedCrossRefGoogle Scholar
  29. Knoch, D., & Fehr, E. (2007). Resisting the power of temptations. Annals of the New York Academy of Sciences, 1104(1), 123–134.PubMedCrossRefGoogle Scholar
  30. Krahé, B. (2013). The social psychology of aggression. Milton Park: Psychology Press.Google Scholar
  31. Kuepper, Y., Alexander, N., Osinsky, R., Mueller, E., Schmitz, A., Netter, P., et al. (2010). Aggression: Interactions of serotonin and testosterone in healthy men and women. Behavioural Brain Research, 206(1), 93–100.PubMedCrossRefGoogle Scholar
  32. Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203–205.PubMedCrossRefGoogle Scholar
  33. Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307(5947), 161–163.PubMedCrossRefGoogle Scholar
  34. Lambert, B., Declerck, C. H., Emonds, G., & Boone, C. (2017). Trust as commodity: Social value orientation affects the neural substrates of learning to cooperate. Social Cognitive and Affective Neuroscience, 12(4), 609–617.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202.PubMedCrossRefGoogle Scholar
  36. Montoya, E. R., Terburg, D., Bos, P. A., & Van Honk, J. (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motivation and Emotion, 36(1), 65–73.PubMedCrossRefGoogle Scholar
  37. Newman, M. L., Pennebaker, J. W., Berry, D. S., & Richards, J. M. (2003). Lying words: Predicting deception from linguistic styles. Personality and Social Psychology Bulletin, 29(5), 665–675.PubMedCrossRefGoogle Scholar
  38. Obsuth, I., Eisner, M. P., Malti, T., & Ribeaud, D. (2015). The developmental relation between aggressive behaviour and prosocial behaviour: A 5-year longitudinal study. BMC psychology, 3(1), 16.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Palazova, M., Mantwill, K., Sommer, W., & Schacht, A. (2009). Effects of emotion in words are localized in post-lexical processing stages. In Psychophysiology (Vol. 46, pp. S160–S160). Commerce place, 350 main st., Malden 02148, MA, USA: Wiley-Blackwell Publishing, Inc.Google Scholar
  40. Pennebaker, J. W., & King, L. A. (1999). Linguistic styles: Language use as an individual difference. Journal of Personality and Social Psychology, 77(6), 1296.PubMedCrossRefGoogle Scholar
  41. Rhee, S. H., Boeldt, D. L., Friedman, N. P., Corley, R. P., Hewitt, J. K., Young, S. E., et al. (2013). The role of language in concern and disregard for others in the first years of life. Developmental Psychology, 49(2), 197.PubMedCrossRefGoogle Scholar
  42. Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Opinion: Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661.PubMedCrossRefGoogle Scholar
  43. Roehm, D., Schlesewsky, M., Bornkessel, I., Frisch, S., & Haider, H. (2004). Fractionating language comprehension via frequency characteristics of the human EEG. NeuroReport, 15(3), 409–412.PubMedCrossRefGoogle Scholar
  44. Rogalsky, C., & Hickok, G. (2008). Selective attention to semantic and syntactic features modulates sentence processing networks in anterior temporal cortex. Cerebral Cortex, 19(4), 786–796.PubMedCrossRefGoogle Scholar
  45. Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the ultimatum game. Science, 300(5626), 1755–1758.PubMedCrossRefGoogle Scholar
  46. Spinrad, T. L., Eisenberg, N., Cumberland, A., Fabes, R. A., Valiente, C., Shepard, S. A., et al. (2006). Relation of emotion-related regulation to children's social competence: A longitudinal study. Emotion, 6(3), 498–510.  https://doi.org/10.1037/1528-3542.6.3.498.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Tabibnia, G., Satpute, A. B., & Lieberman, M. D. (2008). The sunny side of fairness: Preference for fairness activates reward circuitry (and disregarding unfairness activates self-control circuitry). Psychological Science, 19(4), 339–347.PubMedCrossRefGoogle Scholar
  48. Tabullo, Á., Sevilla, Y., Pasqualetti, G., Vernis, S., Segura, E., et al. (2011). Expectancy modulates a late positive ERP in an artificial grammar task. Brain Research, 1373, 131–143.PubMedCrossRefGoogle Scholar
  49. van de Meerendonk, N., Rueschemeyer, S. A., & Kolk, H. H. (2013). Language comprehension interrupted: Both language errors and word degradation activate Broca’s area. Brain and Language, 126(3), 291–301.PubMedCrossRefGoogle Scholar
  50. Vandenberghe, R., Nobre, A. C., & Price, C. J. (2002). The response of left temporal cortex to sentences. Journal of Cognitive Neuroscience, 14(4), 550–560.PubMedCrossRefGoogle Scholar
  51. Von Hippel, W., & Trivers, R. (2011). Reflections on self-deception. Behavioral and Brain Sciences, 34(1), 41–56.CrossRefGoogle Scholar
  52. Wagner, A. D., Paré-Blagoev, E. J., Clark, J., & Poldrack, R. A. (2001). Recovering meaning: Left prefrontal cortex guides controlled semantic retrieval. Neuron, 31(2), 329–338.PubMedCrossRefGoogle Scholar
  53. Wheeler, R. E., Davidson, R. J., & Tomarken, A. J. (1993). Frontal brain asymmetry and emotional reactivity: A biological substrate of affective style. Psychophysiology, 30(1), 82–89.PubMedCrossRefGoogle Scholar
  54. Williams, P. B., Poljacik, G., Decety, J., & Nusbaum, H. C. (2017). Loving-kindness language exposure leads to changes in sensitivity to imagined pain. The Journal of Positive Psychology, 2, 1–5.Google Scholar
  55. Wispe, L. G. (1972). Positive forms of social behavior: An overview. Journal of Social Issues, 28(3), 1–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Humanities and Social SciencesNational Institute of Technology, RaipurRaipurIndia
  2. 2.Department of Biomedical EngineeringNational Institute of Technology, RaipurRaipurIndia

Personalised recommendations