Embodiment Effect on the Comprehension of Mandarin Manual Action Language: An ERP Study

  • Huili WangEmail author
  • Jianrong Li
  • Xiaoshuang Wang
  • Meng Jiang
  • Fengyu Cong
  • Manuel de Vega


Embodiment theories argue that language comprehension involves activating specific sensory–motor systems in the brain. Previous research performed in English and other Indo-European languages suggests that, when compared to compatible sentences referring to the same actions performed sequentially (e.g. ‘After cleaning the wound he unrolled the bandage’), incompatible sentences describing two manual actions performed simultaneously by an agent (e.g. ‘While cleaning the wound he unrolled the bandage’) were worse understood and increased the event-related potentials (ERPs) component N400. The present ERP research aims to further investigate brain response to motor compatibility in native Mandarin speakers. The Chinese experimental sentences described two manual actions either in incongruent conditions marked by the Chinese parallel structure 一边… 一边… (‘yibian…yibian…’/‘while… while…’) or congruent conditions marked by the sequential structure 先… 然后… (‘xian…ranhou…’/‘firstly… then…’). The last action clause elicited larger fronto-central N400 in the incongruent condition, which reveals that there are semantic embodiment effects on the comprehension of Mandarin manual action language.


Embodiment Mandarin Manual action language ERPs Motor compatibility 



This work was supported by the Key Project of the Fundamental Research Funds for the Central Universities in China (Huili Wang, Grant DUT18RW212), by the Spanish MINECO (Grant PSI2015-66277-R), by the European Regional Development Funds (Manuel de Vega), by the Visiting Professor Program at Dalian University of Technology (Manuel de Vega), and by the Research Funds for the School of International Education at Dalian University of Technology (Grant SIE18RZD1).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adorni, R., & Proverbio, A. M. (2012). The neural manifestation of the word concreteness effect: An electrical neuroimaging study. Neuropsychologia, 50, 880–891.CrossRefGoogle Scholar
  2. Amoruso, L., Gelormini, C., Aboitiz, F., González, M. A., Manes, F., Cardona, J. F., et al. (2013). N400 ERPs for actions: Building meaning in context. Frontiers in Human Neuroscience, 7(57), 1–16.Google Scholar
  3. Aravena, P., Hurtado, E., Riveros, R., Cardona, J. F., Manes, F., & Ibáñez, A. (2010). Applauding with closed hands: Neural signature of action-sentence compatibility effects. PLoS ONE, 5(7), e11751.CrossRefGoogle Scholar
  4. Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G., & Iacoboni, M. (2006). Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Current Biology, 16, 1–6.CrossRefGoogle Scholar
  5. Barsalou, L., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. de Vega, A. Glenberg, & A. Graesser (Eds.), Symbols, and embodiment. Debates on meaning and cognition (pp. 245–284). New York: Oxford University Press.CrossRefGoogle Scholar
  6. Bergen, B. (2007). Experimental methods for simulation semantics. In M. Gonzalez-Marquez, I. Mittleberg, S. Coulson, & M. Spivey (Eds.), Methods in cognitive linguistics (pp. 277–301). Amsterdam: John Benjamins.CrossRefGoogle Scholar
  7. Borreggine, K. L., & Kaschak, M. P. (2006). The action–sentence compatibility effect: It’s all in the timing. Cognitive Science, 30, 1097–1112.CrossRefGoogle Scholar
  8. Boulenger, V., Roy, A. C., Paulignan, Y., Deprez, V., Jeannerod, M., & Nazir, T. A. (2006). Cross-talk between language processes and overt motor behavior in the first 200 msec of processing. Journal of Cognitive Neuroscience, 18, 1607–1615.CrossRefGoogle Scholar
  9. Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modulates the activity of the motor system: A combined TMS and behavioral study. Brain Research: Cognitive Brain Research, 24(3), 355–363.CrossRefGoogle Scholar
  10. Cao, F., Brennan, C., & Booth, J. R. (2015). The brain adapts to orthography with experience: Evidence from English and Chinese. Developmental Science, 18(5), 785–798.CrossRefGoogle Scholar
  11. Carretie, L., Martin-Loeches, M., Hinojosa, J. A., & Mercado, F. (2001). Emotion and attention interaction studied through event-related potentials. Journal of Cognitive Neuroscience, 13, 1109–1128.CrossRefGoogle Scholar
  12. Chwilla, D. J., & Kolk, H. H. J. (2005). Accessing world knowledge: Evidence from N400 and reaction time priming. Brain Research: Cognitive Brain Research, 25, 589–606.CrossRefGoogle Scholar
  13. de Vega, M., León, I., Hernández, J. A., Valdés, M., Padrón, I., & Ferstl, E. (2014). Action sentences activate sensory motor regions in the brain independent of their status of reality. Journal of Cognitive Neuroscience, 26, 1363–1376.CrossRefGoogle Scholar
  14. de Vega, M., Moreno, V., & Castillo, D. (2013). The comprehension of action-related sentences may cause interference rather than facilitation on matching actions. Psychological Research, 77, 20–30.CrossRefGoogle Scholar
  15. de Vega, M., Robertson, D. A., Glenberg, A. M., Kaschak, M. P., & Rinck, M. (2004). On doing two things at once: Temporal constraints on actions in language comprehension. Memory & Cognition, 32, 1033–1043.CrossRefGoogle Scholar
  16. García, A., & Ibáñez, A. (2016). A touch with words: Dynamic synergies between manual actions and language. Neuroscience and Biobehavioral Reviews, 68, 59–95.CrossRefGoogle Scholar
  17. Glenberg, A. M., & Gallese, V. (2012). Action-based language: A theory of language acquisition, comprehension, and production. Cortex, 48, 905–922.CrossRefGoogle Scholar
  18. Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9, 558–565.CrossRefGoogle Scholar
  19. Glenberg, A. M., Sato, M., Cattaneo, L., Riggio, L., Palumbo, D., & Buccino, G. (2008). Processing abstract language modulates motor system activity. Quarterly Journal of Experimental Psychology, 61(6), 905–919.CrossRefGoogle Scholar
  20. Guan, C. Q., Meng, W. J., Yao, R., & Glenberg, A. M. (2013). The motor system contributes to comprehension of abstract language. PLoS ONE, 8(9), 1–11.Google Scholar
  21. Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301–307.CrossRefGoogle Scholar
  22. Holcomb, P. J., Kounios, J., Anderson, J. E., & West, W. C. (1999). Dual-coding, context-availability and concreteness effects in sentence comprehension: An electrophysiological investigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(3), 721–742.Google Scholar
  23. Ibáñez, A., Cardona, J. F., Dos Santos, Y. V., Blenkmann, A., Aravena, P., Roca, M., et al. (2013). Motor-language coupling: Direct evidence from early Parkinson’s disease and intracranial cortical recordings. Cortex, 49, 968–984.CrossRefGoogle Scholar
  24. Kaschak, M. P., & Borreggine, K. L. (2008). Temporal dynamics of the action-sentence compatibility effect. The Quarterly Journal of Experimental Psychology, 61, 883–895.CrossRefGoogle Scholar
  25. Kounios, J., & Holcomb, P. (1994). Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(4), 804–823.Google Scholar
  26. Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621–647.CrossRefGoogle Scholar
  27. Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203–205.CrossRefGoogle Scholar
  28. Li, P., Jin, Z., & Tan, L. H. (2004). Neural representations of nouns and verbs in Chinese: An fMRI study. NeuroImage, 21, 1533–1541.CrossRefGoogle Scholar
  29. Mayka, M. A., Corcos, D. M., Leurgans, S. E., & Vaillancourt, D. E. (2006). Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: A meta-analysis. NeuroImage, 31, 1453–1474.CrossRefGoogle Scholar
  30. Moody, C. L., & Gennari, S. P. (2010). Effects of implied physical effort in sensory–motor and pre-frontal cortex during language comprehension. Neuroimage, 49, 782–793.CrossRefGoogle Scholar
  31. Moreno, I., de Vega, M., León, I., Bastiaansen, M., Lewis, A. G., & Magyari, L. (2015). Brain dynamics in the comprehension of action-related language. A time-frequency analysis of mu rhythms. Neuroimage, 109, 50–62.CrossRefGoogle Scholar
  32. Perfetti, C. A. (2003). The universal grammar of reading. Scientific Studies of Reading, 7(1), 3–24.CrossRefGoogle Scholar
  33. Potts, G. F. (2004). An ERP index of task relevance evaluation of visual stimuli. Brain and Cognition, 56, 5–13.CrossRefGoogle Scholar
  34. Santana, E. J., & de Vega, M. (2011). Metaphors are embodied, and so are their literal counterparts. Frontiers in Psychology, 2(90), 1–12.Google Scholar
  35. Santana, E. J., & de Vega, M. (2013a). Temporal constraints on the comprehension of motor language. An embodied semantics approach. Psicológica, 34, 253–271.Google Scholar
  36. Santana, E. J., & de Vega, M. (2013b). An ERP study of motor compatibility effects in action language. Brain Research, 1526, 71–83.CrossRefGoogle Scholar
  37. Sell, A. J., & Kaschak, M. P. (2011). Processing time shifts affects the execution of motor responses. Brain and Language, 117, 39–44.CrossRefGoogle Scholar
  38. Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H. (2004). Biological abnormality of impaired reading is constrained by culture. Nature, 431, 71–76.CrossRefGoogle Scholar
  39. Su, D. Q., Zhong, Y., Zeng, H., & Ye, H. S. (2013). Embodied semantic processing of Chinese action idioms: Evidence from an fMRI study. Acta Psychologica Sinica, 45(11), 1187–1199.CrossRefGoogle Scholar
  40. Tan, L. H., Laird, A. R., Li, K., & Fox, P. T. (2005). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Human Brain Mapping, 25, 83–91.CrossRefGoogle Scholar
  41. Taylor, L. J., Jr., Lev-Ari, S., & Zwaan, R. A. (2008). Inferences about action engage action systems. Brain and Language, 107, 62–67.CrossRefGoogle Scholar
  42. Taylor, L. J., & Zwaan, R. A. (2008). Motor resonance and linguistic focus. The Quarterly Journal of Experimental Psychology, 61, 896–904.CrossRefGoogle Scholar
  43. Tettamanti, M., Manenti, R., Della Rosa, P. A., Falini, A., Perani, D., Cappa, S. F., et al. (2008). Negation in the brain: Modulating action representations. Neuroimage, 43, 358–367.CrossRefGoogle Scholar
  44. Tomasino, B., Fink, G. R., Sparing, R., Dafotakis, M., & Weiss, P. H. (2008). Action verbs and the primary motor cortex: A comparative TMS study of silent reading, frequency judgments, and motor imagery. Neuropsychologia, 46, 1915–1926.CrossRefGoogle Scholar
  45. Van Berkum, J. J. A., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P. (2005). Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 443–467.Google Scholar
  46. Van Berkum, J. J. A., Van den Brink, D., Tesink, C. M. J. Y., Kos, M., & Hagoort, P. (2008). The neural integration of speaker and message. Journal of Cognitive Neuroscience, 20(4), 580–591.CrossRefGoogle Scholar
  47. Van Elk, M., van Schie, H. T., & Bekkering, H. (2008). Semantics in action: An electrophysiological study on the use of semantic knowledge for action. Journal of Physiology-Paris, 102, 95–100.CrossRefGoogle Scholar
  48. Van Elk, M., vanSchie, H. T., Zwaan, R. A., & Bekkering, H. (2010). The functional role of motor resonance in language processing: Motor-cortical oscillations support lexical-semantic retrieval. Neuroimage, 50, 665–677.CrossRefGoogle Scholar
  49. Wu, C.-Y., Ho, M.-H. R., & Chen, S.-H. A. (2012). A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. Neuroimage, 63(1), 381–391.CrossRefGoogle Scholar
  50. Yang, J., & Shu, H. (2011). Embodied representation of tool-use action verbs and hand action verbs: Evidence from a tone judgment task. Neuroscience Letters, 493, 112–115.CrossRefGoogle Scholar
  51. Zwaan, R. A., & Radvansky, G. A. (1998). Situation models in language comprehension and memory. Psychological Bulletin, 123, 162–185.CrossRefGoogle Scholar
  52. Zwaan, R. A., Stoep, N. V. D., Guadalupe, T., & Bouwmeester, S. (2012). Language comprehension in the balance: The robustness of the action-compatibility effect. PLoS ONE, 7(2), e31204.CrossRefGoogle Scholar
  53. Zwaan, R. A., & Taylor, L. J. (2006). Seeing, acting, understanding: Motor resonance in language comprehension. Journal of Experimental Psychology: General, 135(1), 1–11.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Language and Cognition, School of Foreign LanguagesDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.Biomedical EngineeringDalian University of TechnologyDalianChina
  3. 3.Instituto Universitario de Neurociencia (IUNE)Universidad de La LagunaSan Cristóbal de La LagunaSpain
  4. 4.Language and Brain CenterSichuan International Studies UniversityChongqingChina
  5. 5.Faculty of Information TechnologyUniversity of JyväskyläJyväskyläFinland

Personalised recommendations