Journal of Psycholinguistic Research

, Volume 46, Issue 6, pp 1597–1623 | Cite as

The Role of Sensory Perception, Emotionality and Lifeworld in Auditory Word Processing: Evidence from Congenital Blindness and Synesthesia

  • Judith PapadopoulosEmail author
  • Frank Domahs
  • Christina Kauschke


Although it has been established that human beings process concrete and abstract words differently, it is still a matter of debate what factors contribute to this difference. Since concrete concepts are closely tied to sensory perception, perceptual experience seems to play an important role in their processing. The present study investigated the processing of nouns during an auditory lexical decision task. Participants came from three populations differing in their visual-perceptual experience: congenitally blind persons, word-color synesthetes, and sighted non-synesthetes. Specifically, three features with potential relevance to concreteness were manipulated: sensory perception, emotionality, and Husserlian lifeworld, a concept related to the inner versus the outer world of the self. In addition to a classical concreteness effect, our results revealed a significant effect of lifeworld: words that are closely linked to the internal states of humans were processed faster than words referring to the outside world. When lifeworld was introduced as predictor, there was no effect of emotionality. Concerning participants’ perceptual experience, an interaction between participant group and item characteristics was found: the effects of both concreteness and lifeworld were more pronounced for blind compared to sighted participants. We will discuss the results in the context of embodied semantics, and we will propose an approach to concreteness based on the individual’s bodily experience and the relatedness of a given concept to the self.


Abstractness Word processing Auditory lexical decision Synesthesia Blindness Lifeworld Emotionality Embodiment 


  1. Altarriba, J., Bauer, L. M., & Benvenuto, C. (1999). Concreteness, context availability, and imageability ratings and word associations for abstract, concrete, and emotion words. Behavior Research Methods, Instruments & Computers, 31(4), 578–602.CrossRefGoogle Scholar
  2. Altarriba, J., & Bauer, L. M. (2004). The distinctiveness of emotion concepts: A comparison between emotion, abstract, and concrete words. American Journal of Psychology, 117, 389–410.CrossRefPubMedGoogle Scholar
  3. Andersen, E. S., Dunlea, A., & Kekelis, L. (1984). Blind children’s language: Resolving some differences. Journal of Child Language, 11(3), 645–664.CrossRefPubMedGoogle Scholar
  4. Ansorge, U., & Leder, H. (2017). Wahrnehmung und Aufmerksamkeit (2nd ed.). Wiesbaden: Springer.CrossRefGoogle Scholar
  5. Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. Cambridge: University Press.CrossRefGoogle Scholar
  6. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412.Google Scholar
  7. Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In D. Pecher & R. A. Zwaan (Eds.), Grounding cognition: The role of perception and action in memory, language, and thought (pp. 129–163). New York: Cambridge University Press.CrossRefGoogle Scholar
  8. Baschek, I.-L., Bredenkamp, J., Oehrle, B., & Wippich, W. (1977). Bestimmung der Bildhaftigkeit (I), Konkretheit (C) und der Bedeutungshaltigkeit (m’) von 800 Substantiven. Zeitschrift für experimentelle und angewandte Psychologie, XXIV(3), 353–396.Google Scholar
  9. Bates, D. M., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.CrossRefGoogle Scholar
  10. Binder, J. R., Westbury, C. F., McKierman, K. A., Possing, E. T., & Medler, D. A. (2005). Distinct brain systems for processing concrete and abstract concepts. Journal of Cognitive Neuroscience, 17, 905–917.CrossRefPubMedGoogle Scholar
  11. Bleasdale, F. A. (1987). Concreteness-dependent associative priming: Separate lexical organization for concrete and abstract words. Journal of Experimental Psychology: Learning, Memory and Cognition, 13, 582–594.Google Scholar
  12. Breedin, S. D., Saffran, E. M., & Coslett, H. B. (1994). Reversal of the concreteness effect in a patient with sementic dementia. Cognitive Neuropsychology, 11, 617–660.CrossRefGoogle Scholar
  13. Brown, G. D. A., & Watson, F. L. (1987). First in, first out: Word learning age and spoken word frequency as predictors of word familiarity and word naming latency. Memory & Cognition, 15(3), 203–216.CrossRefGoogle Scholar
  14. Büchel, C., Price, C. J., & Friston, K. (1998). A multimodal language region in the ventral visual pathway. Nature, 394, 274–277.CrossRefPubMedGoogle Scholar
  15. Coltheart, V., Laxon, V. J., & Keating, C. (1988). Effects of word imageability and age of acquisition on children’s reading. British Journal of Psychology Society, 79, 1–12.CrossRefGoogle Scholar
  16. De Bleser, R. (2006). A linguist’s view on progressive anomia: Evidence for delbrück (1886) in modern neurolinguistic research. Cortex, 42, 805–810.CrossRefPubMedGoogle Scholar
  17. De Groot, A. M. B. (1989). Representational aspects of word imageability and word frequency as assessed through word association. Journal Experimental Psychology: Learning, Memory and Cognition, 15(5), 824–845.Google Scholar
  18. Duden, (2006). Die deutsche Grammatik (4th ed.). Mannheim: Dudenverlag.Google Scholar
  19. Dunlea, A. (1989). Vision and the emergence of meaning: Blind and sighted children’s early language. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Eaglemann, D. M., Kagan, A. D., Nelson, S. S., Sagaram, D., & Sarma, A. K. (2007). A standardized test battery for the study of Synesthesia. Journal of Neuroscience Methods, 159(1), 139–145.CrossRefGoogle Scholar
  21. Ewald, P. (1992). Konkreta versus Abstrakta. Zur semantischen Subklassifikation deutscher Substantive. Sprachwissenschaft, 17, 259–281.Google Scholar
  22. Franklin, S. (1989). Dissociations in auditory word comprehension: Evidence from nine fluent aphasic patients. Aphasiology, 3(3), 189–207.CrossRefGoogle Scholar
  23. Gernsbacher, M. A. (1984). Resolving 20 years of incosistent interactions between lexical amiliarity and Orothography, concreteness, and polysemy. Journal of Experimental Psychology: General, 113(2), 256–281.CrossRefGoogle Scholar
  24. Goh, W. D., Yap, M. J., Lau, M. C., NG, M. M. R., & Tan, L. C. (2016). Semantic richness effects in spoken word recognition: A lexical decision and semantic categorization megastudy. Frontiers in Psychology, 7, 1–10.CrossRefGoogle Scholar
  25. Husserl, E. (1986). Phänomenologie der Lebenswelt. Ausgewählte Texte I. Dietzingen: Reclam.Google Scholar
  26. Howell, J. R., & Bryden, M. P. (1987). The effects of word orientation and imageability on visual half-field presentations with a lexical decision task. Neuropsychologia, 25(3), 527–538.CrossRefPubMedGoogle Scholar
  27. Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140, 14–34.CrossRefGoogle Scholar
  28. Lee, C., & Federmeier, K. (2008). To watch, to see, and to differ. An event-related potential study of concreteness effects as a function of word class and lexical ambiguity. Brain and Language, 104(2), 145–158.CrossRefPubMedGoogle Scholar
  29. Mills, C. B., Edelson, S. K., Thomas, A. T., Simon-Dack, S. L., & Innis, J. A. (2002). The color of two alphabets for a multilingual synesthete. Perception, 31, 1371–1394.CrossRefPubMedGoogle Scholar
  30. Mills, C. B., Innis, J., Westendorf, T., Owsianiecki, L., & McDonald, A. (2006). Effect of a synesthete’s photisms on name recall. Cortex, 42, 155–163.CrossRefPubMedGoogle Scholar
  31. Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76, 165–178.CrossRefGoogle Scholar
  32. Noppeney, U., & Price, C. J. (2004). Retrieval of abstract semantic. NeuroImage, 22, 164–170.CrossRefPubMedGoogle Scholar
  33. Paivio, A. (1968). A factor-analytic study of word attributes and verbal learning. Journal of Verbal Learning and Verbal Behavior, 7, 41–49.CrossRefGoogle Scholar
  34. Paivio, A. (1991). Dual-coding theory: Retrospect and current status. Canadian Journal of Psychology, 45, 255–287.CrossRefGoogle Scholar
  35. Paivio, A., & Begg, I. (1981). Imagery and comprehension latencies as a function of sentence concreteness and structure. Perception & Psychophysics, 10, 408–412.CrossRefGoogle Scholar
  36. Paivio, A., & Okovita, H. W. (1971). Word imagery modalities and associative learning in blind and sighted subjects. Journal of Verbal Learning and Verbal Behavior, 10, 506–510.CrossRefGoogle Scholar
  37. Papagno, C., Fogliata, A., Catricalà, E., & Miniussi, C. (2009). The lexical processing of abstract and concrete nouns. Brain research, 1263, 78–86.CrossRefPubMedGoogle Scholar
  38. Pérez-Pereira, M. (2014). Contrasting views on the pragmatic abilities of blind children. Enfance, 1, 73–88.CrossRefGoogle Scholar
  39. Pérez-Pereira, M., & Castro, J. (1992). Pragmatic functions of blind and sighted children’s language: A twin case study. First Language, 12, 17–37.CrossRefGoogle Scholar
  40. R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  41. Reilly, J., Peele, J. E., & Grossman, M. (2007). A unitary semantics account of reverse concreteness effects in semantic dementia. Brain and Language, 103, 248–249.CrossRefGoogle Scholar
  42. Röder, B., & Rösler, F. (2004). Kompensatorische Plastizität bei blinden Menschen. Was Blinde über die Adaptivität des Gehirns verraten. Zeitschrift für Neuropsychologie, 15(4), 243–264.CrossRefGoogle Scholar
  43. Samson, D., & Pillon, A. (2003). Concreteness effects in lexical tasks. Access to a mental image? Brain and Language, 87, 25–26.CrossRefGoogle Scholar
  44. Schwanenflugel, P. J. (1991). Why are abstract concepts hard to understand. In P. J. Schwanenflugel (Ed.), The psychology of word meanings (pp. 223–250). Hillsdale: Lawrence Erlbaum Associates Publishers.Google Scholar
  45. Schwanenflugel, P. J., & Akin, C. E. (1993). Developmental trends in lexical decision for abstract and concrete words. Reading Research Report, 1, 1–18.Google Scholar
  46. Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1988). Context availability and lexical decisions for abstract and concrete words. Journal of Memory and Language, 27, 499–520.CrossRefGoogle Scholar
  47. Schwanenflugel, P. J., & Shoben, E. J. (1983). Differential context effects in the comprehension of abstract and concrete verbal materials. Journal of Experimental Psychology: Learning, Memory and Cognition, 9(1), 82–102.Google Scholar
  48. Snefjella, B., & Kuperman, V. (2016). It’s all in the delivery: Effects of context valence, arousal, and concreteness on visual word processing. Cognition, 156, 135–146.CrossRefPubMedGoogle Scholar
  49. Vigliocco, G., Kousta, S.-T., Della Rosa, P. A., Vinson, D. P., Tettamanti, M., & Devlin, J. T., et al. (2013). The neural representation of abstract words: The role of emotion. Cerebral Cortex, 24, 1767–1777.Google Scholar
  50. Warrington, E., & Shallice, T. (1984). Categoric specific semantic impairments. Brain, 107, 829–853.CrossRefPubMedGoogle Scholar
  51. Wiemer-Hastings, K., Krug, J., & Xu, X. (2001). Imagery, context availability, contextual constraint, and abstractness. In: Paper presented at the 23rd Annual Conference Cognitive Science Society, Mahwah.Google Scholar
  52. Xiao, X., Zhao, D., Zhang, Q., & Guo, C. (2012). Retrieval of concrete words involves more conctextual information than abstract words: Multiple components for the concreteness effect. Brain & Language, 120, 251–258.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of Information and CommunicationHochschule der MedienStuttgartGermany
  2. 2.Department of German LinguisticsPhilipps-Universität MarburgMarburgGermany

Personalised recommendations