Journal of Psycholinguistic Research

, Volume 46, Issue 5, pp 1119–1136 | Cite as

Effects of Surprisal and Locality on Danish Sentence Processing: An Eye-Tracking Investigation

  • Laura Winther BallingEmail author
  • Johannes Kizach


An eye-tracking experiment in Danish investigates two dominant accounts of sentence processing: locality-based theories that predict a processing advantage for sentences where the distance between the major syntactic heads is minimized, and the surprisal theory which predicts that processing time increases with big changes in the relative entropy of possible parses, sometimes leading to anti-locality effects. We consider both lexicalised surprisal, expressed in conditional trigram probabilities, and syntactic surprisal expressed in the manipulation of the expectedness of the second NP in Danish constructions with two postverbal NP-objects. An eye-tracking experiment showed a clear advantage for local syntactic relations, with only a marginal effect of lexicalised surprisal and no effect of syntactic surprisal. We conclude that surprisal has a relatively marginal effect, which may be clearest for verbs in verb-final languages, while locality is a robust predictor of sentence processing.


Sentence processing Eye tracking Locality Surprisal theory Danish language 



We are grateful to audiences at the 21st International Conference on Architectures and Mechanisms for Language Processing in Valletta, Malta in September 2015, and at the Center for Cognitive Science at the University of Kaiserslautern in January 2016, for comments on the research reported here. Also thanks to Ken Ramshøj Christensen for valuable discussion and to an anonymous reviewer for insightful comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10936_2017_9482_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (docx 23 KB)


  1. Balling, L. W. (2013). Reading authentic texts: What counts as cognate? Bilingualism: Language and Cognition, 16(3), 637–653.CrossRefGoogle Scholar
  2. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. doi: 10.1016/j.jml.2012.11.001.CrossRefGoogle Scholar
  3. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). lme4: Linear mixed-effects models using Eigen and S4 (Version 1.1-10). Retrieved from
  4. Boston, M., Hale, J., Kliegl, R., Patil, U., & Vasishth, S. (2008). Parsing costs as predictors of reading difficulty: An evaluation using the Potsdam Sentence Corpus. The Mind Research Repository (Beta), (1). Retrieved from
  5. Branigan, H. (2007). Syntactic priming. Language and Linguistics Compass, 1(1–2), 1–16.CrossRefGoogle Scholar
  6. Brown, M., Savova, V., & Gibson, E. (2012). Syntax encodes information structure: Evidence from on-line reading comprehension. Journal of Memory and Language, 66(1), 194–209. doi: 10.1016/j.jml.2011.08.006.CrossRefGoogle Scholar
  7. Chen, S. F., & Goodman, J. (1999). An empirical study of smoothing techniques for language modeling. Computer Speech and Language, 13(4), 359–394.CrossRefGoogle Scholar
  8. Christensen, K. R., Kizach, J., & Nyvad, A. M. (2013). Escape from the Island: Grammaticality and (reduced) acceptability of wh-island violations in Danish. Journal of Psycholinguistic Research, 42(1), 51–70.CrossRefPubMedGoogle Scholar
  9. Clifton, C., & Frazier, L. (2004). Should given information come before new? Yes and no. Memory and Cognition, 32(6), 886–895.CrossRefPubMedGoogle Scholar
  10. De Cuypere, L., & Verbeke, S. (2013). Dative alternation in Indian English: A corpus-based analysis. World Englishes, 32(2), 169–184.CrossRefGoogle Scholar
  11. Demberg, V., & Keller, F. (2008). Data from eye-tracking corpora as evidence for theories of syntactic processing complexity. Cognition, 109(2), 193–210.CrossRefPubMedGoogle Scholar
  12. Ferreira, F., Bailey, K. G., & Ferraro, V. (2002). Good-enough representations in language comprehension. Current Directions in Psychological Science, 11(1), 11–15.CrossRefGoogle Scholar
  13. Ferreira, F., & Patson, N. D. (2007). The ‘good enough’ approach to language comprehension. Language and Linguistics Compass, 1(1–2), 71–83. doi: 10.1111/j.1749-818X.2007.00007.x.CrossRefGoogle Scholar
  14. Fodor, J. D., & Inoue, A. (1998). Attach anyway. In J. D. Fodor & F. Ferreira (Eds.), Reanalysis in sentence processing (pp. 101–141). Berlin: Springer.CrossRefGoogle Scholar
  15. Fodor, J. D., & Inoue, A. (2000). Garden path re-analysis: Attach (anyway) and revision as last resort. In V. Lombardo (Ed.), Cross-linguistic perspectives on language processing (pp. 21–61). Berlin: Springer.CrossRefGoogle Scholar
  16. Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd ed.). Riverside, CA: Sage.Google Scholar
  17. Frank, S. L., & Bod, R. (2011). Insensitivity of the human sentence-processing system to hierarchical structure. Psychological Science, 22(6), 829–834.CrossRefPubMedGoogle Scholar
  18. Frazier, L. (1987). Sentence processing: A tutorial review. In M. Coltheart (Ed.), Attention and performance XII. London: Lawrence Erlbaum Associates.Google Scholar
  19. Frazier, L., & Clifton, C. (1996). Construal. Cambridge: MIT Press.Google Scholar
  20. Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. Cognition, 68(1), 1–76. doi: 10.1016/S0010-0277(98)00034-1.CrossRefPubMedGoogle Scholar
  21. Gibson, E. (2000). The dependency locality theory: A distance-based theory of linguistic complexity. In A. Marantz, Y. Miyashita, & W. O’Neil (Eds.), Image, language, brain papers from the first mind articulation project symposium (pp. 95–126). Cambridge, MA: MIT Press.Google Scholar
  22. Gibson, E. (2003). Sentence comprehension, linguistic complexity in. In L. Nadel (Ed.), Encyclopedia of cognitive science. London: Nature Publishing Group.Google Scholar
  23. Hale, J. (2001). A probabilistic earley parser as a psycholinguistic model. In Proceedings of the second meeting of the North American chapter of the association for computational linguistics on language technologies (pp. 1–8). Association for Computational Linguistics.Google Scholar
  24. Hawkins, J. A. (1990). A parsing theory of word order universals. Linguistic Inquiry, 21(2), 223–261.Google Scholar
  25. Hawkins, J. A. (1994). A performance theory of order and constituency. Cambridge: Cambridge University Press.Google Scholar
  26. Hawkins, J. A. (1998). A processing approach to word order in Danish. Acta Linguistica Hafniensia, 30(1), 63–101.CrossRefGoogle Scholar
  27. Hawkins, J. A. (2004). Efficiency and complexity in grammars. Oxford: Oxford University Press.CrossRefGoogle Scholar
  28. Hawkins, J. A. (2011). Discontinuous dependencies in corpus selections: Particle verbs and their relevance for current issues in language processing. In E. M. Bender & J. E. Arnold (Eds.), Language from a cognitive perspective: Grammar, usage and processing (pp. 269–290). Cambridge, MA: CLSI Publications.Google Scholar
  29. Hawkins, J. A. (2014). Cross-linguistic variation and efficiency. Oxford: Oxford University Press.CrossRefGoogle Scholar
  30. Hofmeister, P., & Sag, I. A. (2010). Cognitive constraints and island effects. Language, 86(2), 366–415. doi: 10.1353/lan.0.0223.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jurafsky, D., & Martin, J. H. (2009). Speech and language processing (2nd ed.). Upper Saddle River, NJ: Pearson Education Inc.Google Scholar
  32. Kizach, J. (2012). Evidence for weight effects in Russian. Russian Linguistics, 36(3), 251–270. doi: 10.1007/s11185-012-9096-0.CrossRefGoogle Scholar
  33. Kizach, J. (2014). A multifactorial analysis of the Russian adversity impersonal construction. Russian Linguistics, 38(2), 205–211. doi: 10.1007/s11185-014-9128-z.CrossRefGoogle Scholar
  34. Kizach, J. (2015). Animacy and the ordering of postverbal prepositional phrases in Danish. Acta Linguistica Hafniensia, 47(2), 199–219.CrossRefGoogle Scholar
  35. Kizach, J., & Balling, L. W. (2013). Givenness, complexity, and the Danish dative alternation. Memory and Cognition, 41(8), 1159–1171. doi: 10.3758/s13421-013-0336-3.CrossRefPubMedGoogle Scholar
  36. Kizach, J., & Vikner, S. (2016). Head adjacency and the Danish dative alternation. Studia Linguistica,. doi: 10.1111/stul.12047.Google Scholar
  37. Koehn, P. (2010). Statistical machine translation. Cambridge: Cambridge University Press.Google Scholar
  38. Konieczny, L. (2000). Locality and parsing complexity. Journal of Psycholinguistic Research, 29(6), 627–645. doi: 10.1023/A:1026528912821.CrossRefPubMedGoogle Scholar
  39. Konieczny, L., & Döring, P. (2003). Anticipation of clause-final heads: Evidence from eye-tracking and SRNs. In Proceedings of iccs/ascs.Google Scholar
  40. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2015). Package “lmerTest” (Version 2.0-29). Retrieved from
  41. Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126–1177. doi: 10.1016/j.cognition.2007.05.006.CrossRefPubMedGoogle Scholar
  42. Levy, R., Fedorenko, E., & Gibson, E. (2013). The syntactic complexity of Russian relative clauses. Journal of Memory and Language, 69(4), 461–495.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Levy, R., & Keller, F. (2013). Expectation and locality effects in German verb-final structures. Journal of Memory and Language, 68(2), 199–222.CrossRefPubMedGoogle Scholar
  44. MacDonald, S. A., & Shillcock, R. C. (2003). Low-level predictive inference in reading: The influence of transitional probabilities on eye movements. Vision Research, 43, 1735–1751.CrossRefGoogle Scholar
  45. Pritchett, B. L. (1992). Grammatical competence and parsing performance. Chicago: University of Chicago Press.Google Scholar
  46. R Development Core Team. (2014). R: A language and environment for statistical computing (Version 3.1.1). Vienna: R Foundation for Statistical Computing. Retrieved from
  47. Rosenbach, A. (2005). Animacy versus weight as determinants of grammatical variation in English. Language, 81(3), 613–644. doi: 10.1353/lan.2005.0149.CrossRefGoogle Scholar
  48. Seoane, E. (2009). Syntactic complexity, discourse status and animacy as determinants of grammatical variation in modern English. English Language and Linguistics, 13(3), 365. doi: 10.1017/S1360674309990153.CrossRefGoogle Scholar
  49. Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic. Cognition, 128(3), 302–319. doi: 10.1016/j.cognition.2013.02.013.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Stolcke, A., Zheng, J., Wang, W., & Abrash, V. (2011). SRILM at sixteen: Update and outlook. In Proceedings of IEEE automatic speech recognition and understanding workshop (Vol. 5).Google Scholar
  51. Szmrecsanyi, B. (2004). On operationalizing syntactic complexity. Jadt-04, 2, 1032–1039.Google Scholar
  52. Thornton, R., MacDonald, M. C., & Arnold, J. E. (2000). The concomitant effects of phrase length and informational content in sentence comprehension. Journal of Psycholinguistic Research, 29(2), 195–203.CrossRefPubMedGoogle Scholar
  53. Vasishth, S., & Lewis, R. L. (2006). Argument-head distance and processing complexity: Explaining both locality and antilocality effects. Language, 82(4), 767–794. doi: 10.1353/lan.2006.0236.CrossRefGoogle Scholar
  54. Warren, T., & Gibson, E. (2002). The influence of referential processing on sentence complexity. Cognition, 85(1), 79–112.CrossRefPubMedGoogle Scholar
  55. Wasow, T. (1997). Remarks on grammatical weight. Language Variation and Change, 9(1), 81–105.CrossRefGoogle Scholar
  56. Wasow, T. (2002). Postverbal behavior. Stanford: CSLI Publications.Google Scholar
  57. Wiechmann, D., & Lohmann, A. (2013). Domain minimization and beyond: Modeling prepositional phrase ordering. Language Variation and Change, 25(1), 65–88.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Management, Society and CommunicationCopenhagen Business SchoolFrederiksbergDenmark
  2. 2.School of Communication and CultureAarhus UniversityAarhusDenmark

Personalised recommendations