Journal of Psycholinguistic Research

, Volume 43, Issue 6, pp 839–853 | Cite as

Working Memory Mechanism in Proportional Quantifier Verification

  • Marcin Zajenkowski
  • Jakub Szymanik
  • Maria Garraffa
Article

Abstract

The paper explores the cognitive mechanisms involved in the verification of sentences with proportional quantifiers (e.g. “More than half of the dots are blue”). The first study shows that the verification of proportional sentences is more demanding than the verification of sentences such as: “There are seven blue and eight yellow dots”. The second study reveals that both types of sentences are correlated with memory storage, however, only proportional sentences are associated with the cognitive control. This result suggests that the cognitive mechanism underlying the verification of proportional quantifiers is crucially related to the integration process, in which an individual has to compare in memory the cardinalities of two sets. In the third study we find that the numerical distance between two cardinalities that must be compared significantly influences the verification time and accuracy. The results of our studies are discussed in the broader context of processing complex sentences.

Keywords

Quantifiers Computational complexity Approximate number sense Working memory Cognitive control 

References

  1. Baddeley, A. D., & Logie, R. H. (1999). Working memory: The multiple component model. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). New York: Cambridge University Press.CrossRefGoogle Scholar
  2. Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.Google Scholar
  3. Chomsky, N. (1969). Aspects of the theory of syntax. Cambridge, MA: The MIT Press.Google Scholar
  4. Clark, R., & Grossman, M. (2007). Number sense and quantifier interpretation. Topoi, 26, 51–62.CrossRefGoogle Scholar
  5. Dehaene, S. (1999). The Number sense: How the mind creates mathematics. Oxford: University Press.Google Scholar
  6. Ebbinghaus, H. D., Flum, J., & Thomas, W. (1996). Mathematical logic. Undergraduate texts in mathematics. New York: Springer.Google Scholar
  7. Engle, R., Kane, M., & Tuholski, S. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 102–134). London: Cambridge Press.CrossRefGoogle Scholar
  8. Gordon, P. C., Hendrick, R., & Levine, W. H. (2002). Memory load interference in syntactic processing. Psychological Science, 13, 425–430.PubMedCrossRefGoogle Scholar
  9. Gordon, P. C., Hendrick, R., & Johnson, M. (2004). Effects of noun phrase type on sentence complexity. Journal of Memory and Language, 51, 97–114.CrossRefGoogle Scholar
  10. Hackl, M. (2009). On the grammar and processing of proportional quantifiers: Most versus more than half. Natural Language Semantics, 17, 63–98.CrossRefGoogle Scholar
  11. Halberda, J., Mazzocco, M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665–668.PubMedCrossRefGoogle Scholar
  12. Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2006). Introduction to automata theory, languages, and computation. Boston: Addison-Wesley Longman Publishing Co.Google Scholar
  13. Just, M., & Carpenter, P. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99, 122–149.PubMedCrossRefGoogle Scholar
  14. Logie, R. H. (2011). The functional organisation and the capacity limits of working memory. Current Directions in Psychological Science, 20, 240–245.CrossRefGoogle Scholar
  15. McMillan, C., Clark, R., Moore, P., Devita, C., & Grossman, M. (2005). Neural basis for generalized quantifiers comprehension. Neuropsychologia, 43, 1729–1737.PubMedCrossRefGoogle Scholar
  16. McMillan, C., Clark, R., Moore, P., & Grossman, M. (2006). Quantifier comprehension in corticobasal degeneration. Brain and Cognition, 62, 250–1260.PubMedCrossRefGoogle Scholar
  17. Miller, G. A., & Chomsky, N. (1963). Finitary models of language users. In D. R. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (Vol. II). New York: Wiley.Google Scholar
  18. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.PubMedCrossRefGoogle Scholar
  19. Pietroski, P., Lidz, J., Hunter, T., & Halberda, J. (2009). The meaning of ‘most’: Semantics, numerosity, and psychology. Mind and Language, 24, 554–585.CrossRefGoogle Scholar
  20. Redick, T., & Engle, R. (2006). Working memory capacity and attention network test performance. Applied Cognitive Psychology, 20, 713–721.CrossRefGoogle Scholar
  21. Ristad, E. S. (1993). The Language complexity game. Artificial intelligence. Cambridge, MA: The MIT Press.Google Scholar
  22. Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652–654.PubMedCrossRefGoogle Scholar
  23. Szymanik, J. (2007). A comment on a neuroimaging study of natural language quantifier comprehension. Neuropsychologia, 45, 2158–2160.PubMedCrossRefGoogle Scholar
  24. Szymanik, J. (2009). Quantifiers in TIME and SPACE. Computational complexity of generalized quantifiers in natural language. PhD thesis, University of Amsterdam.Google Scholar
  25. Szymanik, J. (2010). Computational complexity of polyadic lifts of generalized quantifiers in natural language. Linguistics and Philosophy, 33, 215–250.CrossRefGoogle Scholar
  26. Szymanik, J., & Zajenkowski, M. (2009). Improving methodology of quantifier comprehension experiments. Neuropsychologia, 47, 2682–2683.PubMedCrossRefGoogle Scholar
  27. Szymanik, J., & Zajenkowski, M. (2010a). Comprehension of simple quantifiers. Empirical evaluation of a computational model. Cognitive Science, 34, 521–532.PubMedCrossRefGoogle Scholar
  28. Szymanik, J., & Zajenkowski, M. (2010b). Quantifiers and working memory. Lecture Notes in Artificial Intelligence, 6042, 456–464.Google Scholar
  29. Szymanik, J., & Zajenkowski, M. (2011). Contribution of working memory in the parity and proportional judgments. Belgian Journal of Linguistics, 25, 189–206.CrossRefGoogle Scholar
  30. Van Benthem, J. (1986). Essays in logical semantics. Dordrecht: Reidel.CrossRefGoogle Scholar
  31. Van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32, 939–984.PubMedCrossRefGoogle Scholar
  32. Zajenkowski, M., Styła, R., & Szymanik, J. (2011). A computational approach to quantifiers as an explanation for some language impairments in schizophrenia. Journal of Communication Disorders, 44, 595–600.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marcin Zajenkowski
    • 1
  • Jakub Szymanik
    • 2
  • Maria Garraffa
    • 3
  1. 1.Faculty of PsychologyUniversity of WarsawWarsawPoland
  2. 2.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.School of Education, Communication and Language SciencesNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations