Advertisement

Journal of Psycholinguistic Research

, Volume 42, Issue 2, pp 139–159 | Cite as

The Effects of Syntactic Complexity on Processing Sentences in Noise

  • Rebecca CarrollEmail author
  • Esther Ruigendijk
Article

Abstract

This paper discusses the influence of stationary (non-fluctuating) noise on processing and understanding of sentences, which vary in their syntactic complexity (with the factors canonicity, embedding, ambiguity). It presents data from two RT-studies with 44 participants testing processing of German sentences in silence and in noise. Results show a stronger impact of noise on the processing of structurally difficult than on syntactically simpler parts of the sentence. This may be explained by a combination of decreased acoustical information and an increased strain on cognitive resources, such as working memory or attention, which is caused by noise. The noise effect for embedded sentences is less than for non-embedded sentences, which may be explained by a benefit from prosodic information.

Keywords

Syntactic complexity Noise Reaction times Word-monitoring paradigm Working memory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader M., Bayer J. (2006) Case and linking in language comprehension: Evidence from German. Springer, BerlinGoogle Scholar
  2. Bader M., Häussler J. (2010) Word order in German: A corpus study. Lingua 120(3): 717–762CrossRefGoogle Scholar
  3. Bader M., Meng M. (1999) Subject-object ambiguities in German embedded clauses: An across-the-board comparison. Journal of Psycholinguistic Research 28: 121–143CrossRefGoogle Scholar
  4. Bader M., Meng M., Bayer J., Hopf J.-M. (2000) Syntaktische Funktions-Ambiguitäten im Deutschen: Ein Überblick. Zeitschrift für Sprachwissenschaft 19(1): 34–102CrossRefGoogle Scholar
  5. Boothroyd A., Nittrouer S. (1988) Mathematical treatment of context effects in phoneme and word recognition. Journal of the Acoustical Society of America 84: 101–114PubMedCrossRefGoogle Scholar
  6. Bornkessel I., Schlesewsky M. (2006a) The role of contrast in the local licensing of scrambling in German: Evidence from online comprehension. Journal of Germanic Linguistics 18: 1–43CrossRefGoogle Scholar
  7. Bornkessel I., Schlesewsky M. (2006b) Context-sensitive neural responses to conflict resolution: Electrophysiological evidence from subject–object ambiguities in language comprehension. Brain Research 1098(1): 139–152PubMedCrossRefGoogle Scholar
  8. Bornkessel-Schlesewsky I., Schlesewsky M. (2009) Processing syntax and morphology: A neurocognitive perspective. Oxford University Press, OxfordGoogle Scholar
  9. Bronkhorst A. (2000) The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions. Acta Acustica united with Acustica 86: 117–128Google Scholar
  10. Bronkhorst A. W., Brand T., Wagener K. (2002) Evaluation of context effects in sentence recognition. Journal of the Acoustical Society of America 111: 2874–2886PubMedCrossRefGoogle Scholar
  11. Caplan D., Waters G. S. (1999) Verbal working memory and sentence comprehension. Behavioral and Brain Sciences 22: 77–94PubMedGoogle Scholar
  12. Croft W. (1990) Typology and universals. Cambridge University Press, CambridgeGoogle Scholar
  13. Daneman M., Carpenter P. A. (1980) Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior 19: 450–466CrossRefGoogle Scholar
  14. Deutscher Wortschatz. Universität Leipzig. http://wortschatz.uni-leipzig.de (as of Jan. 12, 2011).
  15. de Vincenzi M. (1998) Reanalysis aspects of movement. In: Fodor J. A., Ferreira F. (Eds.), Reanalysis in sentence processing. Kluwer, Dordrecht, pp 47–71CrossRefGoogle Scholar
  16. Dillon, L. M. (1995). The effect of noise and syntactic complexity on listening comprehension. Unpublished M.Sc. thesis, University of British Columbia. Vancouver.Google Scholar
  17. dos Santos Sequeira S., Specht K., Hämäläinen H., Hugdahl K. (2008) The effects of background noise on dichotic listening to consonant–vowel syllables. Brain and Language 107(1): 11–15PubMedCrossRefGoogle Scholar
  18. Eisenberg P. (2006a) Das Wort: Grundriss der deutschen Grammatik Band 1 (3rd ed.). Metzler, StuttgartGoogle Scholar
  19. Eisenberg P. (2006b) Der Satz: Grundriss der deutschen Grammatik Band 2 (3rd ed.). Metzler, StuttgartGoogle Scholar
  20. Frazier L. (1985) Syntactic complexity. In: Dowty D., Karttunen L., Zwicky A. (Eds.), Natural language parsing. Cambridge University Press, Cambridge, pp 129–189Google Scholar
  21. Frazier L. (1987) Sentence processing: A tutorial review. In: Coltheart M. (Ed.), The psychology of reading. Erlbaum, Hove, pp 559–586Google Scholar
  22. Frazier L., Flores d’Arcais G. (1989) Filler driven parsing: A study of gap filling in Dutch. Journal of Memory and Language 28: 331–344CrossRefGoogle Scholar
  23. Frazier L., Rayner K. (1982) Making and correcting errors during sentence comprehension: Eye movements in the analysis of structurally ambiguous sentences. Cognitive Psychology 14: 178–210CrossRefGoogle Scholar
  24. Friederici A., Kotz S., Scott S., Obleser J. (2010) Disentangling syntax and intelligibility in auditory language comprehension. Human Brain Mapping 31: 448–457PubMedGoogle Scholar
  25. Friedmann N., Gvion A. (2003) Sentence comprehension and working memory limitation in aphasia: A dissociation between semantic-syntactic and phonological reactivation. Brain and Language 86: 23–39PubMedCrossRefGoogle Scholar
  26. Friedmann N. P., Miyake A. (2005) Comparison of four scoring methods for the reading span test. Behavior Research Methods 37(4): 581–590CrossRefGoogle Scholar
  27. Gibson E. (1998) Linguistic complexity: Locality of syntactic dependencies. Cognition 68: 1–76PubMedCrossRefGoogle Scholar
  28. Gibson E. (2000) The dependency locality theory: A distance-based theory of linguistic complexity. In: Miyashita Y., Marantz A., O’Neil W. (Eds.), Image, language, brain. MIT Press, Cambridge, MA, pp 95–126Google Scholar
  29. Gordon P. C., Hendrick R., Levine W. H. (2002) Memory load interference in syntactic processing. Psychological Science 13(5): 425–430PubMedCrossRefGoogle Scholar
  30. Greenberg J. (1966) Universals of language. MIT Press, Cambridge, MAGoogle Scholar
  31. Grodzinsky Y. (2000) The neurology of syntax: Language use without Broca’s area. Behavioral and Brain Sciences 23: 1–21PubMedCrossRefGoogle Scholar
  32. Grodzinsky Y. (2005) Syntactic dependencies as memorized sequences in the brain. Canadian Journal of Linguistics 50: 241–266CrossRefGoogle Scholar
  33. Haarmann H. J., Kolk H. H. (1994) On-line sensitivity to subject-verb agreement violations in Broca’s aphasics: The role of syntactic complexity and time. Brain and Language 46: 493–516PubMedCrossRefGoogle Scholar
  34. Hemforth, B. (1993). Kognitives Parsing: Repräsentation und Verarbeitung sprachlichen Wissens. Sankt Augustin: Infix.Google Scholar
  35. Just M. A., Carpenter P. A. (1992) A capacity theory of comprehension: Individual differences in working memory. Psychological Review 99: 122–149PubMedCrossRefGoogle Scholar
  36. Kaan E. (2002) Investigating the effects of distance and number interference in processing subject-verb dependencies: An ERP study. Journal of Psycholinguistic Research 31: 165–193PubMedCrossRefGoogle Scholar
  37. Kalikow D. N., Stevens K. N., Elliott L. L. (1977) Development of a test of speech intelligibility in noise using sentence materials with controlled word predictability. Journal of the Acoustical Society of America 61(5): 1337–1351PubMedCrossRefGoogle Scholar
  38. Kamide Y., Scheepers C., Altmann G. T. M. (2003) Integration of syntactic and semantic information in predictive processing: Cross-linguistic evidence from German and English. Journal of Psycholinguistic Research 32: 37–55PubMedCrossRefGoogle Scholar
  39. Kilborn K., Moss H. (1996) Word monitoring. Language and Cognitive Processes 11: 689–694CrossRefGoogle Scholar
  40. Kjellberg A. (2004) Effects of reverberation time on the cognitive load in speech communication: Theoretical considerations. Noise and Health 7(25): 11–21PubMedGoogle Scholar
  41. Kollmeier B., Wesselkamp M. (1997) Development and evaluation of a German sentence test for objective and subjective speech intelligibility assessment. Journal of the Acoustical Society of America 102(4): 2412–2421PubMedCrossRefGoogle Scholar
  42. Lewis R., Vasishth S. (2005) An activation-based model of sentence processing as skilled memory retrieval. Cognitive Science 29: 375–419PubMedCrossRefGoogle Scholar
  43. Lewis R. L., Vasishth S., van Dyke J. A. (2006) Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences 10: 447–454PubMedCrossRefGoogle Scholar
  44. Lyxell B., Rönnberg J. (1993) The effects of background noise and working memory capacity on speechreading performance. Scandinavian Audiology 22: 67–70PubMedCrossRefGoogle Scholar
  45. Marslen-Wilson W., Tyler L. K. (1980) The temporal structure of spoken language understanding. Cognition 8: 1–71PubMedCrossRefGoogle Scholar
  46. Martin C. R., Shelton J. R., Yaffee L. S. (1994) Language processing and working memory: Neuropsychological evidence for separate phonological and semantic capacities. Journal of Memory and Language 33: 83–111CrossRefGoogle Scholar
  47. Mattys S. L., Brooks J., Cooke M. (2009) Recognizing speech under a processing load: Dissociating energetic from informational factors. Cognitive Psychology 59: 203–243PubMedCrossRefGoogle Scholar
  48. McElree B., Foraker S., Dyer L. (2003) Memory structures that subserve sentence comprehension. Journal of Memory & Language 48: 67–91CrossRefGoogle Scholar
  49. Müller S. (2010) Grammatiktheorie. Stauffenburg Verlag, StuttgartGoogle Scholar
  50. Pappert S., Pechmann T. (2012) The impact of case and prosody on the availability of argument structures. In: Lamers M., de Swart P. (Eds.), Case, word order, and prominence: Psycholinguistic and theoretical approaches to argument structure. Springer, Berlin, pp 173–186CrossRefGoogle Scholar
  51. Plomp R., Mimpen A. M. (1979) Improving the reliability of testing the speech reception threshold for sentences. Audiology 18: 43–52PubMedCrossRefGoogle Scholar
  52. Rizzi L. (1990) Relativized minimality. MIT Press, CambridgeGoogle Scholar
  53. Rönnberg J., Rudner M., Lunner T., Zekveld A. A. (2010) When cognition kicks in: Working memory and speech understanding in noise. Noise and Health 12: 263–269PubMedCrossRefGoogle Scholar
  54. Salisbury D. F., Desantis M. A., Shenton M. E., McCarley R. W. (2002) The effect of background noise on P300 to suprathreshold stimuli. Psychophysiology 39: 111–115PubMedCrossRefGoogle Scholar
  55. Schriefers H., Friederici A. D., Kühn K. (1995) The processing of locally ambiguous relative clauses in German. Journal of Memory and Language 34: 499–520CrossRefGoogle Scholar
  56. Shapiro L. P., Zurif E., Grimshaw J. (1987) Sentence processing and the mental representation of verbs. Cognition 27: 219–246PubMedCrossRefGoogle Scholar
  57. Shapiro L.P., Zurif E.B., Grimshaw J. (1989) Verb processing during sentence comprehension: Contextual impenetrability. Journal of Psycholinguistic Research 18(2): 223–243PubMedGoogle Scholar
  58. Uslar, V. N., Brand, T., Hanke, M., Carroll, R., Ruigendijk, E., Hamann, C., et al. (2010). Does sentence complexity interfere with intelligibility in noise? Evaluation of the Oldenburg Linguistically and Audiologically Controlled Sentence Test (OLACS). In Proceedings of interspeech (pp. 2482–2485). Makuhari, Chiba, Japan.Google Scholar
  59. Uslar V., Ruigendijk E., Hamann C., Brand T., Kollmeier B. (2011) How does linguistic complexity influence intelligibility in a German audiometric sentence intelligibility test?. International Journal of Audiology 50: 621–631PubMedCrossRefGoogle Scholar
  60. Wagener K., Kühnel V., Kollmeier B. (1999a) Entwicklung und Evaluation eines Satztests für die deutsche Sprache I: Design des Oldenburger Satztests. Zeitschrift für Audiologie/ Audiological Acoustics 38: 4–15Google Scholar
  61. Wagener K., Brand T., Kollmeier B. (1999b) Entwicklung und Evaluation eines Satztests für die Deutsche Sprache II: Optimierung des Oldenburger Satztests. Zeitschrift für Audiologie/ Audiological Acoustics 38: 44–56Google Scholar
  62. Wagener K., Brand T., Kollmeier B. (1999c) Entwicklung und Evaluation eines Satztests für die deutsche Sprache III: Evaluation des Oldenburger Satztests. Zeitschrift für Audiologie/ Audiological Acoustics 38: 86–95Google Scholar
  63. Wagener K., Josvassen J., Ardenkjær R. (2003) Design, optimization and evaluation of a Danish sentence test in noise. International Journal of Audiology 42(1): 10–17PubMedCrossRefGoogle Scholar
  64. Weskott, T., Hörnig, R., Fanselow, G., & Kliegl, R. (2009). Strong contextual licensing of German marked OVS word order. Poster presented at the 15th Annual Conference of Architectures and Mechanisms for Language Processing (AMLaP). Universidad Pompeu Fabra, Barcelona. September 7–9, 2009. Barcelona.Google Scholar
  65. Wingfield A., Peelle J. E., Grossman M. (2003) Speech rate and syntactic complexity as multiplicative factors in speech comprehension by young and older adults. Aging and Neuropsychological Cognition 10: 310–322CrossRefGoogle Scholar
  66. Wingfield A., McCoy S. L., Peelle J. E., Tun P. A., Cox L. C. (2006) Effects of adult aging and hearing loss on comprehension of rapid speech varying in syntactic complexity. Journal of the American Academy of Audiology 17: 487–497PubMedCrossRefGoogle Scholar
  67. Yampolsky S., Waters G., Caplan D., Matthies M., Chiu P. (2002) Effects of acoustic degradation on syntactic processing: Implications for the nature of the resource system used in language processing. Brain & Cognition 48(2–3): 617–625Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Dutch Studies, Carl-von-Ossietzky Universität OldenburgOldenburgGermany
  2. 2.Medical Physics GroupUniversity of OldenburgOldenburgGermany

Personalised recommendations