Skip to main content
Log in

Constructing porous ZnO/SnO2 nanocomposites for the detection of methane at low operating temperature

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Aimed at detecting methane (CH4) gas at low operating temperature, porous ZnO/SnO2 nanocomposites were constructed through a simple two-step method. Pure SnO2 with a diameter of approximately 120 nm was first synthesized via a hydrothermal method, and then a smaller and looser ZnO/SnO2 composite structure was obtained by introducing the second component ZnO. The CH4 sensing test results showed that the ZnO/SnO2 composites exhibited lower optimum operating temperature (OOT) than that of pure SnO2. Besides, compared with pure SnO2, the ZnO/SnO2 composite based sensor present higher response to CH4, as well as good repeatability, stability and linearity in a certain range of gas concentration. The improved sensitivity can be mainly attributed to the synergistic effect of porous structure and heterojunction formed between ZnO and SnO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Li, Y. Li, G. Sun, B. Zhang, Y. Wang, Z. Zhang, Enhanced CH4 sensitivity of porous nanosheets-assembled ZnO microflower by decoration with Zn2SnO4. Sens. Actuators B: Chem. 304, 127374 (2020)

    Article  CAS  Google Scholar 

  2. S. Zhang, Y. Li, G. Sun, B. Zhang, Y. Wang, J. Cao, Z. Zhang, Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance. Appl. Surf. Sci. 497, 143811 (2019)

    Article  CAS  Google Scholar 

  3. J. Xia, F. Zhu, S. Zhang, A. Kolomenskii, H. Schuessler, A ppb level sensitive sensor for atmospheric methane detection. Infrared Phys. Technol. 86, 194–201 (2017)

    Article  CAS  Google Scholar 

  4. M. Dong, C. Zheng, S. Miao, Y. Zhang, Q. Du, Y. Wang, F.K. Tittel, Development and Measurements of a Mid-Infrared Multi-Gas Sensor System for CO, CO2 and CH4 Detection. Sensors (Basel) 17(10), 2221 (2017)

    Article  Google Scholar 

  5. G. Xie, P. Sun, X. Yan, X. Du, Y. Jiang, Fabrication of methane gas sensor by layer-by-layer self-assembly of polyaniline/PdO ultra thin films on quartz crystal microbalance. Sens. Actuators, B Chem. 145(1), 373–377 (2010)

    Article  CAS  Google Scholar 

  6. D. Nagai, M. Nishibori, T. Itoh, T. Kawabe, K. Sato, W. Shin, Ppm level methane detection using micro-thermoelectric gas sensors with Pd/Al2O3 combustion catalyst films. Sens. Actuators, B Chem. 206, 488–494 (2015)

    Article  CAS  Google Scholar 

  7. S. Bakhshi Sichani, A. Nikfarjam, H. Hajghassem, A novel miniature planar gas ionization sensor based on selective growth of ZnO nanowires. Sens. Actuators A: Phys. 288, 55–60 (2019)

    Article  CAS  Google Scholar 

  8. D. Xue, Z. Zhang, Y. Wang, Enhanced methane sensing performance of SnO2 nanoflowers based sensors decorated with Au nanoparticles. Mater. Chem. Phys. 237, 121864 (2019)

    Article  CAS  Google Scholar 

  9. S. Zhang, Y. Li, G. Sun, B. Zhang, Y. Wang, J. Cao, Z. Zhang, Enhanced methane sensing properties of porous NiO nanaosheets by decorating with SnO2. Sens. Actuators, B Chem. 288, 373–382 (2019)

    Article  CAS  Google Scholar 

  10. S. Navazani, A. Shokuhfar, M. Hassanisadi, M. Askarieh, A. Di Carlo, A. Agresti, Facile synthesis of a SnO2@rGO nanohybrid and optimization of its methane-sensing parameters. Talanta 181, 422–430 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. D. Xue, P. Wang, Z. Zhang, Y. Wang, Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: A combined experimental and first-principle study. Sens. Actuators B: Chem. 296, 126710 (2019)

    Article  CAS  Google Scholar 

  12. J. Hu, F. Gao, Z. Zhao, S. Sang, P. Li, W. Zhang, X. Zhou, Y. Chen, Synthesis and characterization of Cobalt-doped ZnO microstructures for methane gas sensing. Appl. Surf. Sci. 363, 181–188 (2016)

    Article  CAS  Google Scholar 

  13. S. Zhang, C. Wang, F. Qu, S. Liu, C.T. Lin, S. Du, Y. Chen, F. Meng, M. Yang, ZnO nanoflowers modified with RuO2 for enhancing acetone sensing performance. Nanotechnology 31(11), 115502 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang, Y. Wang, A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. J. Alloys Comp. 820, 153194 (2020)

    Article  CAS  Google Scholar 

  15. J. Zhang, D. Leng, L. Zhang, G. Li, F. Ma, J. Gao, H. Lu, B. Zhu, Porosity and oxygen vacancy engineering of mesoporous WO3 nanofibers for fast and sensitive low-temperature NO2 sensing. J Alloys Comp. 853, 1573 (2021)

    Article  Google Scholar 

  16. Y. Liu, X. Gao, F. Li, G. Lu, T. Zhang, N. Barsan, Pt-In2O3 mesoporous nanofibers with enhanced gas sensing performance towards ppb-level NO2 at room temperature. Sens. Actuators, B Chem. 260, 927–936 (2018)

    Article  CAS  Google Scholar 

  17. J. Liu, X. Lin, M. Sun, B. Du, L. Li, J. Bai, M. Zhou, Thiourea-assistant growth of In2O3 porous pompon assembled from 2D nanosheets for enhanced ethanol sensing performance. Talanta 219, 121323 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. H. Song, T. Chen, X. Zhang, X. Jia, One-step template-free synthesis of hollow core–shell α-Fe2O3 microspheres with improved lithium storage and gas-sensing properties. CrystEngComm 17(5), 1173–1181 (2015)

    Article  CAS  Google Scholar 

  19. Z. Cao, Z. Jiang, L. Cao, Y. Wang, C. Feng, C. Huang, Y. Li, Lattice expansion and oxygen vacancy of alpha-Fe2O3 during gas sensing. Talanta 221, 121616 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Li, N. Luo, G. Sun, B. Zhang, G. Ma, H. Jin et al., Facile synthesis of ZnFe2O4 /α-Fe2O3 porous microrods with enhanced TEA-sensing performance. J. Alloy. Compd. 737, 255–262 (2018)

    Article  CAS  Google Scholar 

  21. H. Gao, J. Guo, Y. Li, C. Xie, X. Li, L. Liu, Y. Chen, P. Sun, F. Liu, X. Yan, F. Liu, G. Lu, Highly selective and sensitive xylene gas sensor fabricated from NiO/NiCr2O4 p-p nanoparticles. Sens. Actuators, B Chem. 284, 305–315 (2019)

    Article  CAS  Google Scholar 

  22. D. Ju, H. Xu, Q. Xu, H. Gong, Z. Qiu, J. Guo et al., High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors. Sens. Actuators B Chem. 215, 39–44 (2015)

    Article  CAS  Google Scholar 

  23. A.M. Al-Hamdi, U. Rinner, M. Sillanpää, Tin dioxide as a photocatalyst for water treatment: A review. Process Saf. Environ. Prot. 107, 190–205 (2017)

    Article  CAS  Google Scholar 

  24. Y. Zou, S. Chen, J. Sun, J. Liu, Y. Che, X. Liu, J. Zhang, D. Yang, Highly efficient gas sensor using a hollow sno2 microfiber for triethylamine detection. ACS Sens 2(7), 897–902 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. X. Liu, L. Long, W. Yang, L. Chen, J. Jia, Facilely electrodeposited coral-like copper micro-/nano-structure arrays with excellent performance in glucose sensing. Sens. Actuators, B Chem. 266, 853–860 (2018)

    Article  CAS  Google Scholar 

  26. M. Xu, R. Yu, Y. Guo, C. Chen, Q. Han, J. Di, P. Song, L. Zheng, Z. Zhang, J. Yan, W. Zhao, J. Yun, C. Liu, Q. Li, Y. Wang, X. Wang, Z. Liu, New strategy towards the assembly of hierarchical heterostructures of SnO2/ZnO for NO2 detection at a ppb level. Inorganic Chem. Front. 6(10), 2801–2809 (2019)

    Article  CAS  Google Scholar 

  27. G. Li, X. Wang, L. Yan, Y. Wang, Z. Zhang, J. Xu, PdPt Bimetal-Functionalized SnO2 Nanosheets: Controllable Synthesis and its Dual Selectivity for Detection of Carbon Monoxide and Methane. ACS Appl Mater Interfaces 11(29), 26116–26126 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. N. Liu, H. Yu, Y. Yang, X.-T. Dong, Fabrication of 3D Multi-edges cube porous SnO2/ZnO composites as high-performance NOx gas sensor. IEEE Sens. J. 20(6), 2852–2859 (2020)

    Article  CAS  Google Scholar 

  29. K.S. Pakhare, B.M. Sargar, S.S. Potdar, A.K. Sharma, U.M. Patil, Facile synthesis of nano-diced SnO2–ZnO composite by chemical route for gas sensor application. J. Electron. Mater. 48(10), 6269–6279 (2019)

    Article  CAS  Google Scholar 

  30. Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl Mater Interfaces 2(10), 2915–2923 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. J. Zhang, D. Zeng, Q. Zhu, J. Wu, Q. Huang, W. Zhang, C. Xie, Enhanced room temperature NO2 response of NiO-SnO2 nanocomposites induced by interface bonds at the p-n heterojunction. Phys Chem Chem Phys 18(7), 5386–5396 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. D. Xue, S. Zhang, Z. Zhang, Hydrothermal synthesis of methane sensitive porous In2O3 nanosheets. Mater. Lett. 252, 169–172 (2019)

    Article  CAS  Google Scholar 

  33. D. Zhang, H. Chang, Fabrication of platinum-loaded cobalt oxide/molybdenum disulfide nanocomposite toward methane gas sensing at low temperature. Sens. Actuators B: Chem. 252, 624–632 (2017)

    Article  CAS  Google Scholar 

  34. J. Wöllenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Böttner, I. Eisele, Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures. Sens. Actuators, B Chem. 93(1–3), 442–448 (2003)

    Article  Google Scholar 

  35. N.M. Vuong, N.M. Hieu, H.N. Hieu, H. Yi, D. Kim, Y.-S. Han, M. Kim, Ni2O3-decorated SnO2 particulate films for methane gas sensors. Sens. Actuators, B Chem. 192, 327–333 (2014)

    Article  Google Scholar 

  36. A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Barsan, W. Gopel, Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors. Sens. Actuators B 70, 87–100 (2000)

    Article  CAS  Google Scholar 

  37. S. Nasresfahani, M.H. Sheikhi, M. Tohidi, A. Zarifkar, Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route. Mater. Res. Bull. 89, 161–169 (2017)

    Article  CAS  Google Scholar 

  38. Y. Xiao, Q. Yang, Z. Wang, R. Zhang, Y. Gao, P. Sun, Y. Sun, G. Lu, Improvement of NO2 gas sensing performance based on discoid tin oxide modified by reduced graphene oxide. Sens. Actuators, B Chem. 227, 419–426 (2016)

    Article  CAS  Google Scholar 

  39. H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators, B Chem. 192, 607–627 (2014)

    Article  CAS  Google Scholar 

  40. T. Yu, X. Cheng, X. Zhang, L. Sui, Y. Xu, S. Gao, H. Zhao, L. Huo, Highly sensitive H2S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays. Journal of Materials Chemistry A 3(22), 11991–11999 (2015)

    Article  CAS  Google Scholar 

  41. X.H. Xu, S.Y. Ma, X.L. Xu, T. Han, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang, Ultra-sensitive glycol sensing performance with rapid-recovery based on heterostructured ZnO-SnO2 hollow nanotube. Mater. Lett. 273, 127967 (2020)

    Article  CAS  Google Scholar 

  42. D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators, B Chem. 204, 250–272 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (U1704255, 62101177), and the Program for Innovative Research Team of Henan Polytechnic University (T2019-1, T2018-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saisai Zhang or Zhanying Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Zhang, S., Zhang, B. et al. Constructing porous ZnO/SnO2 nanocomposites for the detection of methane at low operating temperature. J Porous Mater 29, 269–278 (2022). https://doi.org/10.1007/s10934-021-01162-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01162-5

Keywords

Navigation