Synthesis of hybrid materials by immobilizing para-aminobenzoic acid complexes of Eu3+ and Tb3+ in zeolite Y and their luminescent properties

  • K. S. Ambili
  • Jesty ThomasEmail author


Two new lanthanide containing zeolite Y based luminescent hybrid materials were synthesized and characterized. Exchange of Na+ from zeolite Y with lanthanide ions (Eu3+ or Tb3+) was carried out by ultrasonication and annealing. Para-amino benzoic acid was introduced to the ion exchanged zeolite Y to form complex with the lanthanide ion. Characterizations of the materials were carried out using IR spectroscopy, PXRD, SEM, UV–Vis absorption spectroscopy, TG–DTA and DSC analysis. Luminescence properties of these materials were studied using photoluminescence spectroscopy. Complex formation inside the zeolite cage increased the luminescence efficiency of the lanthanide ions through antenna effect. Tb3+ containing hybrid material showed efficient energy transfer due to the optimal energy level matching of the triplet level of ligand and the emissive level of Tb3+. Zeolite Y structure acts as a protective barrier against the degradation of organic part as is evident from the high thermal stability of the materials.


Inorganic–organic hybrid material Zeolite Y Para-aminobenzoic acid Luminescence 



This work was financially supported by Department of Science and Technology (DST), New Delhi, India.

Supplementary material

10934_2019_857_MOESM1_ESM.docx (52 kb)
Supplementary file1 (DOCX 51 kb)


  1. 1.
    D. Ghosh, M.N. Luwang, RSC. Adv. 5, 10468 (2015)CrossRefGoogle Scholar
  2. 2.
    T. Jesty, K.S. Ambili, A.M. Baby, S. Sonyamol, J. Appl. Spectrosc. 84, 156 (2017)CrossRefGoogle Scholar
  3. 3.
    E.H. de Faria, E.J. Nassar, K.J. Ciuffi, M.A. Vicente, R. Trujillano, V. Rives, P.S. Calefi, New ACS. Appl. Mater. Interfaces 4, 1311 (2011)CrossRefGoogle Scholar
  4. 4.
    E.H. de Faria, K.J. Ciuffi, E.J. Nassar, M.A. Vicente, R. Trujillano, P.S. Calefi, Appl. Clay. Sci. 48, 516 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Wang, W. Dou, A.M. Kirillo, W. Liu, C. Xu, R. Fang, L. Yang, Dalton Trans. 45, 18610 (2016)CrossRefGoogle Scholar
  6. 6.
    L.D. Carlos, R.A.S. Ferreira, V. de Zea-Bermudez, B. Julian-Lopez, Chem. Soc. Rev. 40, 536 (2011)CrossRefGoogle Scholar
  7. 7.
    L. Qing-Feng, L. Jin, L. Li, W. Ma, Z. Wang, J. Hao, J. Mater. Chem. C 5, 4670 (2017)CrossRefGoogle Scholar
  8. 8.
    J.A. van Hensbergen, M. Liu, R.P. Burford, A.B. Lowe, J. Mater. Chem. C 3, 702 (2015)Google Scholar
  9. 9.
    Y. Zheng, C.C. Zhang, Q. Wang, Sens. Actuators B 245, 622 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, K. Liu, T. He, J. Wua, Y. Fang, J. Solid State Chem. 194, 416 (2012)CrossRefGoogle Scholar
  11. 11.
    R. Su, Q. Wang, Colloid. Polym. Sci. 293, 2979 (2015)CrossRefGoogle Scholar
  12. 12.
    L. Chen, B. Yan, Spectrochim. Acta A 131, 1 (2014)CrossRefGoogle Scholar
  13. 13.
    T.-W. Duan, B. Yan, Photochem. Photobiol. 90, 503 (2014)CrossRefGoogle Scholar
  14. 14.
    C.K. Modi, P.M. Trivedi, Arab. J. Chem. 10, S1452 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Choudhary, B. Das, S. Ray, Inorg. Chim. Acta 462, 256 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Rayati, E. Bohloulbandi, S. Zakavi. Inorg. Chem. Commun. 54, 38 (2015)CrossRefGoogle Scholar
  17. 17.
    C.K. Modi, B.G. Gade, J.A. Chudasama, D.K. Parmar, H.D. Nakum, A.L. Pate, Spectrochim. Acta A 140, 174 (2015)CrossRefGoogle Scholar
  18. 18.
    D.R. Godhani, H.D. Nakum, D.K. Parmar, J.P. Mehta, N.C. Desai, Inorg. Chem. Commun. 72, 105 (2016)CrossRefGoogle Scholar
  19. 19.
    D. Tian-Wei, B. Yan, Photochem. Photobiol. 90, 503 (2014)CrossRefGoogle Scholar
  20. 20.
    X. Yang, C.S. Tiam, X. Yu, H.V. Demir, X.W. Sun, Appl. Mater. Interface 3, 4431 (2011)CrossRefGoogle Scholar
  21. 21.
    Y. Ding, Y. Wang, Y. Li, P. Cao, T. Ren, Photochem. Photobiol. Sci. 10, 543 (2011)CrossRefGoogle Scholar
  22. 22.
    H. Li, H. Zhang, L. Wang, D. Mu, S. Qi, X. Hu, L. Zhang, J. Yuan, J. Mater. Chem. 22, 9338 (2012)CrossRefGoogle Scholar
  23. 23.
    A. Mech, A. Monguzzi, F. Meinardi, J. Mezyk, G. Macchi, R. Tubino, J. Am. Chem. Soc. 132, 4574 (2010)CrossRefGoogle Scholar
  24. 24.
    H. Li, P. Li, Chem. Commun. 54, 13884 (2018)CrossRefGoogle Scholar
  25. 25.
    J. Feng, H. Zhang, Chem. Soc. Rev. 42, 387 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Wang, P. Li, S. Wang, H. Li, J Rare Earths 37, 451 (2019)CrossRefGoogle Scholar
  27. 27.
    P. Woolley, K.G. Steinhäuser, B. Epe, Biophys. Chem. 26, 367 (1987)CrossRefGoogle Scholar
  28. 28.
    J.A.S. Costa, R.A. de Jesus, D.D. Dorst, I.M. Pinatti, L.M. da Roliveira, M.E. de Mesquita, C.M. Paranhos, J. Luminesc. 192, 1149–1156 (2017)CrossRefGoogle Scholar
  29. 29.
    Q. Limei, F. Ying, Z. Jinyu, H. Nangui, L. Lijun, G. Xiuzhi, X. Mudi, L. Yibin, S. Yanqiang, X. Guangtong, J. Rare Earths 35, 658 (2017)CrossRefGoogle Scholar
  30. 30.
    N.V. Roik, L.A. Belyakova, Phys Chem Solid State 12, 168 (2011)Google Scholar
  31. 31.
    S. Ye, J. Sun, X. Yi, Y. Wang, Q. Zhang, Sci. Rep. (2017). CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    J.P. Montañez, S. Góme, A.N. Santiago, L.B. Pierella, J. Braz. Chem. Soc. 26, 191 (2015)Google Scholar
  33. 33.
    J. Xu, L. Jia, Y. Maa, X. Liu, H. Tian, W. Liu, Y. Tang, Mater. Chem. Phys. 136, 112 (2012)CrossRefGoogle Scholar
  34. 34.
    Y.-L. Sui, B. Yan, Inorg. Mater. 42, 144 (2006)CrossRefGoogle Scholar
  35. 35.
    S.K. Gupta, P.S. Ghosh, K. Sudarshan, R. Gupta, P.K. Pujari, R.M. Kadam, Dalton Trans. 44, 19097 (2015)CrossRefGoogle Scholar
  36. 36.
    F.J. de Sousa, G.P.A. de Lima, L.R. Ávila, K.J. Ciuffi, P.S. Calefi, E.J. Nassar, Mater. Res. 13, 71 (2010)CrossRefGoogle Scholar
  37. 37.
    T. Kataoka, K. Shiba, L.Y. Wang, S. Yamada, M. Tagaya, RSC. Adv. 7, 19479 (2017)CrossRefGoogle Scholar
  38. 38.
    H. Fang, X. Wei, S. Zhou, X. Li, C.-K. Duan, M. Yin, RSC Adv. 7, 10200 (2017)CrossRefGoogle Scholar
  39. 39.
    Y. Bing, Z. Hong-jie, N. Jia-zuan, Chem. Res. Chin. Univ. 14(3), 245 (1998)Google Scholar
  40. 40.
    S. Bijua, M.L.P. Reddy, A.H. Cowley, K.V. Vasudevan, J. Mater. Chem. 19, 5179 (2009)CrossRefGoogle Scholar
  41. 41.
    J.A. Teixeira, W.D.G. Nunes, T.A.D. Colman, A.L.C.S. do Nascimento, F.J. Caires, F.X. Campos, D.A. Galico, M. Ionashiro, Thermochim. Acta 624, 59 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Research Department of ChemistryKuriakose Elias CollegeKottayamIndia

Personalised recommendations