Advertisement

Silver nanoparticle embedded anionic crosslinked copolymer hydrogels: an efficient catalyst

  • 23 Accesses

Abstract

The present study aimed to synthesize poly(2-acrylamido-2-methyl-1-propansulfonic acid-co-acrylic acid), p(AMPS-c-AA), embedded with silver nanoparticles and to investigate their potential in catalysis. The hydrogels were prepared from 2-acrylamido-2-methyl-1-propansulfonic acid (AMPS) and acrylic acid (AA) monomers via free radical polymerization reaction technique in the mild reaction condition and silver nanoparticles were fabricated within hydrogel by reducing Ag (I) ions using NaBH4 as reducing agent. The synthesized p(AMPS-c-AA) hydrogel was characterized by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and nuclear magnetic resonance spectroscopy (NMR). Silver nanoparticles embedded in p(AMPS-c-AA) hydrogel were visualized by transmission electron microscopy (TEM). The metal content of composites was estimated via atomic absorption spectroscopy (AAS). Applications of this synthesized hydrogel was also investigated by using as a catalyst in the reduction of 4-nitrophenol and H2 generation from hydrolysis of sodium borohydride (NaBH4). The activation energies, enthalpy, and entropy for 4-NP reduction and NaBH4 hydrolysis catalyzed by composite were determined. P(AMPS-c-AA)-Ag composite was also used as catalyst in the aerobic oxidation of alcohols by emphasizing the effects of different parameters such as temperature, substituent effect, etc. Finally, recycling of the poly(AMPS-c-AA) hydrogel fabricated with Ag nanoparticles was carried out for four consecutive cycles and no significant loss in catalytic activity was observed.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Z. Zhang, T. Sun, C. Chen, F. Xiao, Z. Gong, S. Wang, ACS Appl. Mater. Interfaces 6, 21035 (2014)

  2. 2.

    Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, N. Hamada, Nature 418, 164 (2002)

  3. 3.

    C. Bianchini, P.K. Shen, Chem. Rev. 109, 4183 (2009)

  4. 4.

    A. Balanta, C. Godard, C. Claver, Chem. Soc. Rev. 40, 4973 (2011)

  5. 5.

    J. Lee, J.C. Park, H. Song, Adv. Mater. 20, 1523 (2008)

  6. 6.

    S. Demirci, C. Silan, N. Sahiner, J. Macromol. Sci. A 263, 103 (2014)

  7. 7.

    L. Yu, K. Dean, L. Li, Prog. Polym. Sci. 31, 576 (2006)

  8. 8.

    M.P. Pileni, Nat. Mater. 2, 145 (2003)

  9. 9.

    O.M. Wilson, R.W.J. Scott, J.C. Garcia-Martines, R.M. Crooks, J. Am. Chem. Soc. 127, 1015 (2005)

  10. 10.

    Y. Lee, M.A. Garcia, N.A. Frey Huls, S.H. Sun, Angew. Chem. Int. Ed. 49, 1293 (2010)

  11. 11.

    H. Ozay, S. Kubilay, N. Aktas, N. Sahiner, Int. J. Polym. Mater. 60, 163 (2011)

  12. 12.

    M. Ghorbanloo, P. Nazari, J. Porous Mater. (2019). https://doi.org/10.1007/s10934-019-00794-y

  13. 13.

    S.V. Otari, R.M. Patil, S.R. Waghmare, S.J. Ghosh, S.H. Pawar, Dalton Trans. 42, 9966 (2013)

  14. 14.

    D. Diaz Diaz, D. Kuhbeck, R.J. Koopmans, Chem. Soc. Rev. 40, 427 (2011)

  15. 15.

    A. Nikpourian, M.R. Ghazavi, S. Azizi, Compos. B 173, 106950 (2019)

  16. 16.

    S.M. Ansar, C.L. Kitchens, ACS Catal. 6, 5553 (2016)

  17. 17.

    B.S. Mohan, K. Ravi, R.B. Anjaneyulu, G.S. Sree, K. Basavaiah, Phys. B Condens. Matter 553, 190 (2019)

  18. 18.

    W. Muersha, G.S. Pozan Soylu, J. Mol. Struct. 1174, 96 (2018)

  19. 19.

    Y. Qu, G. Ren, L. Yu, B. Zhu, F. Chai, L. Chen, J. Lumin. 207, 589 (2019)

  20. 20.

    A.A. Al-Kahtani, T. Almuqati, N. Alhokbany, T. Ahamad, M. Naushad, S.M. Alshehri, J. Clean Prod. 191, 429 (2018)

  21. 21.

    R.K. Dhokale, H.M. Yadav, S.N. Achary, S.D. Delekar, Appl. Surf. Sci. 303, 168 (2014)

  22. 22.

    J. Gao, J. Xu, S. Wen, J. Hu, H. Liu, Microporous Mesoporous Mater. 207, 149 (2015)

  23. 23.

    K. Hareesh, R.P. Joshi, D.V. Sunitha, V.N. Bhoraskar, S.D. Dhole, Appl. Surf. Sci. 389, 1050 (2016)

  24. 24.

    M. Engin, O. Ozay, Int. J. Hydrog. Energy 43, 15083 (2018)

  25. 25.

    Q. Wang, Z. Zhang, J. Liu, R. Liu, T. Liu, Mater. Chem. Phys. 204, 58 (2018)

  26. 26.

    Z. Li, L. Wang, Y. Zhang, G. Xie, Int. J. Hydrog. Energy 42, 5749 (2017)

  27. 27.

    Y. Wei, W. Meng, Y. Wang, Y. Gao, K. Qi, K. Zhang, Int. J. Hydrog. Energy 42, 6072 (2017)

  28. 28.

    X. Wang, J. Liao, H. Li, H. Wang, R. Wang, Int. J. Hydrog. Energy 42, 6646 (2017)

  29. 29.

    T. Karaca, M. Sevim, O. Metin, Chem. Cat. Chem. 9, 4185 (2017)

  30. 30.

    D.S. Kılınc, O. Ahin, C. Saka, Int. J. Hydrog. Energy 43, 251 (2018)

  31. 31.

    K. Guo, H. Li, Z. Yu, ACS Appl. Mater. Interfaces 10, 517 (2018)

  32. 32.

    M. Sankir, L. Semiz, R.B. Serin, N.D. Sankir, Int. J. Hydrog. Energy 40, 8522 (2015)

  33. 33.

    Y.J. Choi, Y. Xu, W.J. Shaw, E.C.E. Ronnebro, J. Phys. Chem. C 116, 8349 (2012)

  34. 34.

    Y. Zhao, Y. Liu, H. Liu, H. Kang, K. Cao, Q. Wang, J. Power Sources 300, 358 (2015)

  35. 35.

    Q.L. Zhu, Q. Xu, Energy Environ. Sci. 8, 478 (2015)

  36. 36.

    S. Yildiz, N. Aktas, N. Sahiner, Int. J. Hydrog. Energy 39, 14690 (2014)

  37. 37.

    X. Wang, S. Sun, Z. Huang, H. Zhang, S. Zhang, Int. J. Hydrog. Energy 39, 905 (2014)

  38. 38.

    M.C. Wang, L.Z. Ouyang, J.W. Liu, H. Wang, M. Zhu, J. Alloys Compd. 717, 48 (2017)

  39. 39.

    Y. Wang, R. Yan, J. Zhang, W. Zhang, J. Mol. Catal. A 317, 81 (2010)

  40. 40.

    H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, J. Am. Chem. Soc. 127, 9374 (2005)

  41. 41.

    Y.M.A. Yamada, T. Arakawa, H. Hocke, Y. Uozumi, Angew. Chem. Int. Ed. 46, 704 (2007)

  42. 42.

    S. Kanaoka, N. Yagi, Y. Fukuyama, S. Aoshima, H. Tsunoyama, T. Tsukuda, H. Sakurai, J. Am. Chem. Soc. 129, 12060 (2007)

  43. 43.

    M. Ghorbanloo, A. Heydari, H. Yahiro, Appl. Organomet. Chem. 32, e3917 (2018)

  44. 44.

    A. Abad, A. Corma, H. Garcia, Chem. Eur. J. 14, 212 (2008)

  45. 45.

    P. Haider, J.D. Grunwaldt, R. Seidel, A. Baiker, J. Catal. 250, 313 (2007)

  46. 46.

    J. Chen, Q. Zhang, Y. Wang, H. Wan, Adv. Synth. Catal. 350, 453 (2008)

  47. 47.

    M. Ghorbanloo, N. Moharramkhani, T. Mokary Yazdely, H.H. Monfard, J. Porous Mater. 26, 433 (2019)

  48. 48.

    A. Biffis, L. Minati, J. Catal. 236, 405 (2005)

  49. 49.

    Z. Opre, J.D. Grunwaldt, M. Maciejewski, D. Ferri, T. Mallat, A. Baiker, J. Catal. 230, 406 (2005)

  50. 50.

    M. Boruah, P. Gogoi, A. Kumar Manhar, M. Khannam, M. Mandalb, S.K. Dolui, RSC Adv. 4, 43865 (2014)

  51. 51.

    M. Ghorbanloo, M. Jaworska, P. Paluch, G.D. Li, L.J. Zhou, Trans. Metal. Chem. 38, 511 (2013)

  52. 52.

    I. Iliopoulos, R. Auderbert, Macromolecules 24, 2566 (1991)

  53. 53.

    M. Ajmal, M. Siddiq, M.H. Al-Lohedanc, N. Sahiner, RSC Adv. 4, 59562 (2014)

  54. 54.

    M. Ajmal, S. Demirci, M. Siddiq, N. Aktas, N. Sahiner, Colloid Surf. A 486, 29 (2015)

  55. 55.

    F. Genc, C. Uzun, O. Guven, Polym. Bull. (2015). https://doi.org/10.1007/s00289-015-1479-0

  56. 56.

    N. Sahiner, S. Yildiz, H. Al-Lohedan, Appl. Catal. B 166, 145 (2015)

  57. 57.

    J. Jiang, G.H. Gunasekar, S. Park, S.H. Kim, S. Yoon, L. Piao, Mater. Res. Bull. 100, 184 (2018)

  58. 58.

    S. Chairam, W. Konkamdee, R. Parakhun, J. Saudi Chem. Soc. 21, 656 (2017)

  59. 59.

    J. Singha, A. Mehtab, M. Rawata, S. Basub, J. Environ. Chem. Eng. 6, 1468 (2018)

  60. 60.

    S. Giria, R. Dasa, C. Westhuyzenb, A. Maity, Appl. Catal. B 209, 669 (2017)

  61. 61.

    S. Butun, N. Sahiner, Polymer 52, 4834 (2011)

  62. 62.

    P.D. Sharma, P. Panchariya, P. Purohit, P.K. Sharma, Eur. Chem. Bull. 2, 816 (2013)

  63. 63.

    T. Harada, S. Ikeda, F. Hashimoto, T. Sakata, K. Ikeue, T. Torimoto, M. Matsumura, Langmuir 26, 17720 (2010)

Download references

Acknowledgements

Authors are thankful to University of Zanjan for financial support of this study.

Author information

Correspondence to Massomeh Ghorbanloo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghorbanloo, M., Nosrati Fallah, H. Silver nanoparticle embedded anionic crosslinked copolymer hydrogels: an efficient catalyst. J Porous Mater (2020). https://doi.org/10.1007/s10934-019-00850-7

Download citation

Keywords

  • Hydrogel
  • Co-polymer
  • H2 generation
  • Reduction
  • Oxidation