A lithium–aluminosilicate zeolite membrane for separation of CO2 from simulated blast furnace gas

  • Priyanka Roy
  • Nandini DasEmail author


In this study, for the first time, the small pore size (0.28 × 0.37 nm) Li–aluminosilicate zeolite membrane was synthesized for separation of CO2 from H2–CO2 and H2–CO2–N2–CO (simulated blast furnace gas) gas mixtures. Li–aluminosilicate membranes were prepared on porous clay alumina tubes by sonication mediated hydrothermal method using pre synthesized zeolite powders as seeds. The zeolite formation was confirmed by X-ray diffraction pattern and FESEM analysis. The scanning electron micrograph of the membrane, suggested the uniformity of the dense structure of the membrane. Single-gas and mixed-gas permeation experiments through membranes were carried out at 25 °C using H2, CO2 and N2 single-component gases and mixture of H2–CO2, H2–CO2–N2–CO for simulated blast furnace gas composition. Synthesized Li–aluminosilicate zeolite shows appreciable CO2 adsorption capacity at liquid nitrogen temperature compared with other reported zeolites. In case of single gas permeation, membrane shows usual pattern of permeation. For mixture gas, separation efficiency of Li–zeolite membrane increased abruptly compared to the other zeolite membranes. The maximum CO2–H2, CO2–N2 and CO2–CO separation selectivities were found to be 78, 8.7 and 67.3 respectively, with permeance of H2, CO2 and N2 2.21 × 10−7, 1.01 × 10−7 and 0.8 × 10−7 mol m−2 s−1 Pa−1 at 25 °C respectively.


Li–aluminosilicate Zeolite Sonochemical technique Membrane Gas separation 



The authors would like to thank CSIR, India and also thankful to Dr. K. Muraleedharan, Director, CGCRI for his kind permission to publish the research work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

10934_2019_849_MOESM1_ESM.docx (2.2 mb)
Electronic supplementary material 1 (DOCX 2243 kb)Schematic of Gas separation set up is described in SI. FESEM micrograph of Bikitaite membrane surface and cross section with corresponding EDAX analysis are described in Fig.S2 and Fig. S3 (a-c). Supporting Information Available: This material is available free of charge via the Internet at


  1. 1.
    K. Aasberg-Petersen, C. Stub Nielsen, I. Dybkjaer, J. Perregaard, Large scale methanol production from natural gas. HaldorTopsoe 22, 1–14 (2008)Google Scholar
  2. 2.
    A.L. Kohl, R. Nielson, Gas Purification (Gulf Publishing, Houston, 1997), pp. 1081–1086Google Scholar
  3. 3.
    S. Sircar, T.C. Golden, Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 35, 667–687 (2000)CrossRefGoogle Scholar
  4. 4.
    J. Stocker, M. Whysall, G.Q. Miller, 30 Years of PSA Technology for Hydrogen Purification, 5th edn. (UOP LLC, Des Plaines, 1998)Google Scholar
  5. 5.
    R. Bredesen, K. Jordal, O. Bolland, High temperature membranes in power generation with CO2 capture. Chem. Eng. Process. 43, 1129–1158 (2004)CrossRefGoogle Scholar
  6. 6.
    S. Adhikari, S. Fernando, Hydrogen membrane separation techniques. Ind. Eng. Chem. Res. 45, 875–881 (2006)CrossRefGoogle Scholar
  7. 7.
    R.W. Spillman, W.R. Grace, Economics of gas separation membranes. Chem. Eng. Prog. 85, 41–62 (1989)Google Scholar
  8. 8.
    L.C. Boudreau, J.A. Kuck, M. Tsapatsis, Deposition of oriented zeolite A films: in situ and secondary growth. J. Membr. Sci. 152, 41–59 (1999)CrossRefGoogle Scholar
  9. 9.
    Z. Lai, G. Bonilla, I. Diaz, J.G. Nery, K. Sujaoti, M.A. Amat, E. Kokkoli, O. Terasaki, R.W. Thompson, M. Tsapatsis, D.G. Valchos, Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300, 456–460 (2003)PubMedGoogle Scholar
  10. 10.
    M. Macchione, J.C. Jansen, E. Drioli, The dry phase inversion technique as a tool to produce highly efficient asymmetric gas separation membranes of modified PEEK influence of temperature and air circulation. Desalination 192, 132–141 (2006)CrossRefGoogle Scholar
  11. 11.
    G.A. Ozin, A. Kuperman, A. Stein, Advanced zeolite materials science. Angew. Chem. Int. Ed. 28, 359–376 (1989)CrossRefGoogle Scholar
  12. 12.
    A. Tavolaro, E. Drioli, Zeolite membranes. Adv. Mater. 11, 975–996 (1999)CrossRefGoogle Scholar
  13. 13.
    A.S. Huang, F.Y. Liang, F. Steinbach, J. Caro, Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent Linker. J. Membr. Sci. 350, 5–9 (2010)CrossRefGoogle Scholar
  14. 14.
    R.C. Lochan, M. Head-Gordon, Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys. Chem. Chem. Phys. 8, 1357–1370 (2006)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    D.J. Drysdale, A synthesis of bikitaite. Am. Miner. 56, 1718–1723 (1971)Google Scholar
  17. 17.
    V.P. Valtchev, L. Tosheva, K.N. Bozhilov, Synthesis of zeolite nanocrystals at room temperature. Langmuir 21, 10724–10729 (2005)CrossRefGoogle Scholar
  18. 18.
    Y. Huang, D.H. Dong, J.F. Yao, L. He, J. Ho, C.K. Kong, A.J. Hill, H. Wang, In situ crystallization of macroporous monoliths with hollow NaP zeolite structure. Chem. Mater. 22, 5271–5278 (2010)CrossRefGoogle Scholar
  19. 19.
    J.C. Yu, J.G. Yu, W.K. Ho, L. Zhang, Preparation of highly photocatalytic active nano-Sized TiO2 particles via ultrasonic irradiation. Chem. Commun. 19, 1942–1943 (2001)CrossRefGoogle Scholar
  20. 20.
    D.S. Zhang, H.X. Fu, L.Y. Shi, C. Pan, Q. Li, Y. Chu, W. Yu, Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. Inorg. Chem. 46, 2446–2451 (2007)CrossRefGoogle Scholar
  21. 21.
    J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22, 1039–1059 (2010)CrossRefGoogle Scholar
  22. 22.
    Y.Q. Wang, X.H. Tang, L.X. Yin, W. Huang, R. Hacohen, A. Gedanken, Sonochemical synthesis of mesoporous titanium oxide with wormhole-like framework structures. Adv. Mater. 12, 1183–1186 (2000)CrossRefGoogle Scholar
  23. 23.
    P. Roy, N. Das, Ultrasonic assisted synthesis of bikitaite zeolite: a potential material for hydrogen storage application. Ultrason. Sonochem. 36, 466–473 (2017)CrossRefGoogle Scholar
  24. 24.
    P. Roy, N. Das, Synthesis of NaX zeolite-graphite amine fiber composite membrane: role of graphite amine in membrane formation for H2/CO2 separation. Appl. Surf. Sci. 480, 934–944 (2019)CrossRefGoogle Scholar
  25. 25.
  26. 26.
    M.C. Capel-Sanchez, L. Barrio, J.M. Campos-Martin, J.L. Fierro, Silylation and surface properties of chemically grafted hydrophobic silica. J. Colloid Interface Sci. 277, 146–153 (2004)CrossRefGoogle Scholar
  27. 27.
    L. Sandstrom, E. Sjoberg, J. Hedlund, Very high flux MFI membrane for CO2 separation. J. Membr. Sci. 380, 232–240 (2011)CrossRefGoogle Scholar
  28. 28.
    M. Hong, S. Li, J.L. Falconer, R.D. Noble, Hydrogen purification using a SAPO-34 membrane. J. Membr. Sci. 307, 277–283 (2008)CrossRefGoogle Scholar
  29. 29.
    W. Mei, Y. Du, T. Wu, F. Gao, B. Wang, J. Duan, J. Zhou, R. Zhou, High-flux CHA zeolite membranes for H2 separations. J. Membr. Sci. 565, 358–369 (2018)CrossRefGoogle Scholar
  30. 30.
    D. Korelskiy, P. Ye, S. Fouladvand, S. Karimi, E. Sjoberg, J. Hedlund, Efficient ceramic zeolite membranes for CO2/H2 separation. J. Mater. Chem. A 3, 12500–12506 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Ceramic Membrane DivisionCentral Glass & Ceramic Research Institute, CSIRCalcuttaIndia

Personalised recommendations