Advertisement

Simple synthesis of hierarchical porous carbon with developed graphene domains for high performance supercapacitors

  • Chengbiao Wei
  • Jiankang Xu
  • Qingchao Fan
  • Ruihui Gan
  • Yan Song
  • Chang MaEmail author
  • Jingli ShiEmail author
Article
  • 37 Downloads

Abstract

Hierarchical porous carbons with localized graphene structure, high specific surface area and large pore volume are simply synthesized by the means of short-time pyrolysis at moderate temperatures and acid-washing. Citric acid and cobalt acetate were used as carbon source and template precursor, the effect of mass ratio of citric acid/cobalt acetate on the microstructures of the hierarchical porous carbon, including morphology, crystal structure, porosity, specific surface area and surface chemistry, have been investigated. The resultant hierarchical porous carbons possess high specific surface area of 1411 m2/g, a large pore volume of 2.34 cm3/g. Both three-electrode and two-electrode test were conducted to evaluate capacitive performance of the hierarchical porous carbon. The test of three-electrode system with 6 M KOH aqueous solution as electrolyte, the hierarchical porous carbon shows superior specific capacitance up to 239 F/g at 0.1 A/g. In 1 M Na2SO4 aqueous electrolyte. Moreover, the hierarchical porous carbon based two-electrode supercapacitors presents gravimetric energy density of 11.6 Wh/kg and power density of 250 W/kg. This work developed a facile way for high surface areas and large pore volume electrode materials for energy storage devices.

Keywords

Simple synthesis Graphene domains Hierarchical porous carbons Supercapacitors 

Notes

Acknowledgements

The authors acknowledge financial support from the University of Science and Technology Development Fund Planning Project of Tianjin (2017KJ072).

References

  1. 1.
    Z. Wu, L. Li, J.M. Yan, X.B. Zhang, Adv. Sci. 4, 6 (2017)Google Scholar
  2. 2.
    C. Zhao, C. Yu, S. Liu, J. Yang, X. Fan, H. Huang, J. Qiu, Adv. Funct. Mater. 25, 44 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Chen, Y. Zhang, L. Xing, Y. Liao, Y. Qiu, S. Yang, W. Li, Adv. Mater. 29, 48 (2017)Google Scholar
  4. 4.
    Y.B. Tan, J.-M. Lee, J. Mater. Chem. A. 1, 47 (2013)Google Scholar
  5. 5.
    Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45, 21 (2016)Google Scholar
  6. 6.
    J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4, 4 (2014)Google Scholar
  7. 7.
    Y. Zhang, X. Liu, S. Wang, L. Li, S. Dou, Adv. Energy Mater 7, 21 (2017)Google Scholar
  8. 8.
    X. He, X. Xie, J. Wang, X. Ma, Y. Xie, J. Gu, N. Xiao, J. Qiu, Nanoscale 11, 14 (2019)CrossRefGoogle Scholar
  9. 9.
    Z. Li, L. Zhang, B. Li, Z. Liu, Z. Liu, H. Wang, Q. Li, Chem. Eng. J. 313, 1242–1250 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Zhang, H. Su, L. Zhang, B. Zhang, F. Chun, X. Chu, W. He, W. Yang, J. Power Sources 331, 332–339 (2016)CrossRefGoogle Scholar
  11. 11.
    W. Yang, W. Yang, F. Ding, L. Sang, Z. Ma, G. Shao, Carbon 111, 419–427 (2017)CrossRefGoogle Scholar
  12. 12.
    H. Su, H. Zhang, F. Liu, F. Chun, B. Zhang, X. Chu, H. Huang, W. Deng, B. Gu, H. Zhang, X. Zheng, M. Zhu, W. Yang, Chem. Eng. J. 322, 73–81 (2017)CrossRefGoogle Scholar
  13. 13.
    F. Wei, X. He, H. Zhang, Z. Liu, N. Xiao, J. Qiu, J. Power Sources 428, 8–12 (2019)CrossRefGoogle Scholar
  14. 14.
    Z.L. Yu, S. Xin, Y. You, L. Yu, Y. Lin, D.W. Xu, C. Qiao, Z.H. Huang, N. Yang, S.H. Yu, J.B. Goodenough, J. Am. Chem. Soc. 138, 45 (2016)Google Scholar
  15. 15.
    K. Zhou, M. Hu, Y. He, L. Yang, C. Han, R. Lv, F. Kang, B. Li, Carbon 129, 667–673 (2018)CrossRefGoogle Scholar
  16. 16.
    X. He, X. Li, H. Ma, J. Han, H. Zhang, C. Yu, N. Xiao, J. Qiu, J. Power Sources 340, 183–191 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Ni, R. Wang, H. Wang, C. Sun, B. Sun, X. Guo, S. Jiang, Z. Shi, W. Jing, L. Zhu, S. Qiu, Z. Zhang, Carbon 139, 1152–1159 (2018)CrossRefGoogle Scholar
  18. 18.
    Z. Chen, S. Zhao, Y. Zhou, C. Yu, W. Zhong, W. Yang, Nanoscale 10, 32 (2018)Google Scholar
  19. 19.
    P. Wang, J. Xu, F. Xu, W. Zhao, P. Sun, Z. Zhang, M. Qian, F. Huang, Carbon 134, 391–397 (2018)CrossRefGoogle Scholar
  20. 20.
    O. ASAO, and O. SUGIO, Carbon 19, 5 (1981)Google Scholar
  21. 21.
    C.J. Thambiliyagodage, S. Ulrich, P.T. Araujo, M.G. Bakker, Carbon 134, 452–463 (2018)CrossRefGoogle Scholar
  22. 22.
    R. Lopez Anton, J.A. Gonzalez, J.P. Andres, J. Canales-Vazquez, J.A. De Toro, J.M. Riveiro, Nanotechnology 25, 10 (2014)Google Scholar
  23. 23.
    Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, Z. Fan, Carbon 67, 119–127 (2014)CrossRefGoogle Scholar
  24. 24.
    P. Williams, A. Reed, Biomass Bioenergy 30, 2 (2006)Google Scholar
  25. 25.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  26. 26.
    G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C 112, 8192–8195 (2008)CrossRefGoogle Scholar
  27. 27.
    B. Chang, Y. Guo, Y. Li, H. Yin, S. Zhang, B. Yang, X. Dong, J. Mater. Chem. A. 3, 18 (2015)Google Scholar
  28. 28.
    M.S. Dresselhaus, A. Jorio, R. Saito, Annu. Rev. Conden. Matter Phys. 1, 1 (2010)CrossRefGoogle Scholar
  29. 29.
    R. Hawaldar, P. Merino, M.R. Correia, I. Bdikin, J. Gracio, J. Mendez, J.A. Martin-Gago, M.K. Singh, Sci. Rep. 2, 682 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Carbon 46, 11 (2008)Google Scholar
  31. 31.
    J.-H. Zhou, Z.-J. Sui, J. Zhu, P. Li, D. Chen, Y.-C. Dai, W.-K. Yuan, Carbon 45, 4 (2007)Google Scholar
  32. 32.
    X. He, N. Zhang, X. Shao, M. Wu, M. Yu, J. Qiu, Chem. Eng. J. 297, 121–127 (2016)CrossRefGoogle Scholar
  33. 33.
    L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Adv. Energy Mater. 1, 3 (2011)CrossRefGoogle Scholar
  34. 34.
    L. Zhong, K. Yang, R. Guan, L. Wang, S. Wang, D. Han, M. Xiao, Y. Meng, ACS Appl. Mater. Interfaces 9, 50 (2017)Google Scholar
  35. 35.
    B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, Energy Environ. Sci. 4, 8 (2011)Google Scholar
  36. 36.
    N. Mao, H. Wang, Y. Sui, Y. Cui, J. Pokrzywinski, J. Shi, W. Liu, S. Chen, X. Wang, D. Mitlin, Nano Res. 10, 5 (2017)Google Scholar
  37. 37.
    L.G.H. Staaf, P. Lundgren, P. Enoksson, Nano Energy 9, 128–141 (2014)CrossRefGoogle Scholar
  38. 38.
    L. Pan, Y. Wang, H. Hu, X. Li, J. Liu, L. Guan, W. Tian, X. Wang, Y. Li, M. Wu, Carbon 134, 345–353 (2018)CrossRefGoogle Scholar
  39. 39.
    Y. Sun, S. Guo, W. Li, J. Pan, C. Fernandez, R.A. Senthil, X. Sun, J. Power Sources 405, 80–88 (2018)CrossRefGoogle Scholar
  40. 40.
    X. He, Z. Liu, H. Ma, N. Zhang, M. Yu, M. Wu, Microporous Mesoporous Mater. 236, 134–140 (2016)CrossRefGoogle Scholar
  41. 41.
    H. Zhang, L. Zhang, J. Chen, H. Su, F. Liu, W. Yang, J. Power Sources 315, 120–126 (2016)CrossRefGoogle Scholar
  42. 42.
    S. Zuo, J. Chen, W. Liu, X. Li, Y. Kong, C. Yao, Y. Fu, Carbon 129, 199–206 (2018)CrossRefGoogle Scholar
  43. 43.
    M. Wu, P. Li, Y. Li, J. Liu, Y. Wang, RSC Adv. 5, 21 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage TechnologyTianjin Polytechnic UniversityTianjinChina
  2. 2.CAS Key Laboratory of Carbon Materials, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanChina

Personalised recommendations