Advertisement

N-Doped ordered porous carbon decorated with WN and Ni nanoparticles for enhanced electrocatalytic properties

  • 29 Accesses

Abstract

Design of non-noble metal-based nanocatalysts supported on N-doped porous carbon is very important for electrocatalytic applications. Herein, we propose a new transition metal nitrides (TMNs) catalyst through an in-situ synthesis, in which WN and Ni nanoparticles (NPs) are uniformly anchored in N-doped ordered porous carbon (WN–Ni/NPC). N-doped porous carbon with high surface area favors electrolyte infiltration and reactants diffusion, and its three-dimensional (3D) conductive network offers fast electron transport. Moreover, doping of N element together with uniformly distributed NPs further enhance the catalytic activity towards oxygen reduction reaction (ORR). Benefiting from the above superiorities and synergistic effect between the WN and Ni NPs, the WN–Ni/NPC shows good catalytic performance for ORR in alkaline media. The present synthetic method is highly valuable for designing N-doped porous carbon supported TMNs-based catalysts.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. Wang, X. Duan, T. Mueller, Y. Huang, Science 348, 1230–1234 (2015)

  2. 2.

    C. Zhu, D. Du, A. Eychmuller, Y. Lin, Chem. Rev. 115, 8896–8943 (2015)

  3. 3.

    H. Xue, J. Tang, H. Gong, H. Guo, X. Fan, T. Wang, J. He, Y. Yamauchi, A.C.S. Appl, Mater. Interfaces 8, 20766–20771 (2016)

  4. 4.

    E. Antolini, Energy Environ. Sci. 2, 915–931 (2009)

  5. 5.

    T. Yu, D. Kim, H. Zhang, Y. Xia, Angew. Chem., Int. Ed. 123, 2825–2829 (2011).

  6. 6.

    X. Huang, Z. Zhao, J. Fan, Y. Tan, N. Zheng, J. Am. Chem. Soc. 133, 4718–4721 (2011)

  7. 7.

    L. Zhang, L. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S. Choi, J. Park, J. Herron, Z. Xie, M. Mavrikakis, Y. Xia, Science 349, 412–415 (2015)

  8. 8.

    L. Zhang, J. Fischer, Y. Jia, X. Yan, W. Xu, X. Wang, J. Chen, D. Yang, H. Liu, L. Zhuang, M. Hankel, D.J. Searles, K. Huang, S. Feng, C.L. Brown, X. Yao, J. Am. Chem. Soc. 140, 10757–10763 (2018)

  9. 9.

    K. Stoerzinger, M. Risch, B. Han, Y. Shao-Horn, ACS Catal. 5, 6021–6031 (2015)

  10. 10.

    X. Gu, S. Samira, E. Nikolla, Chem. Mater. 30, 2860–2872 (2018)

  11. 11.

    X. Gu, J. Carneiro, S. Samira, A. Das, N. Ariyasingha, E. Nikolla, J. Am. Chem. Soc. 140, 8128–8137 (2018)

  12. 12.

    Z. Cui, Y. Li, G. Fu, X. Li, J. Goodenough, Adv. Mater. 29, 1702385 (2017)

  13. 13.

    D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater. 29, 1606459 (2017)

  14. 14.

    Y. Zhou, H. Xue, T. Wang, H. Guo, X. Fan, L. Song, W. Xia, H. Gong, Y. He, J. Wang, J. He, Chem. Asian J. 12, 60–66 (2017)

  15. 15.

    L. Song, T. Wang, L. Li, C. Wu, J. He, Appl. Catal., B 244, 197–205 (2019).

  16. 16.

    H. Xue, X. Mu, J. Tang, X. Fan, H. Gong, T. Wang, J. He, J. Mater. Chem. A 4, 9106–9112 (2016)

  17. 17.

    W. Xia, J. Li, T. Wang, L. Song, H. Guo, H. Gong, C. Jiang, B. Gao, J. He, Chem. Commun. 54, 1623–1626 (2018)

  18. 18.

    A. Morozan, B. Jousselme, S. Palacin, Energy Environ. Sci. 4, 1238–1254 (2011)

  19. 19.

    Z. Yang, H. Nie, X. Chen, X. Chen, S. Huang, J. Power Sources 236, 238–249 (2013)

  20. 20.

    E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H. Mao, R. Hemley, Nat. Mater. 3, 294–297 (2004)

  21. 21.

    H. Yan, M. Meng, L. Wang, A. Wu, C. Tian, L. Zhao, H. Fu, Nano Res. 9, 329–343 (2016)

  22. 22.

    D. Choi, P.N. Kumta, J. Am. Ceram. Soc. 90, 3113–3120 (2007)

  23. 23.

    S. Jing, L. Luo, S. Yin, F. Huang, Y. Jia, Y. Wei, Z. Sun, Y. Zhao, Appl. Catal., B 147, 897–903 (2014).

  24. 24.

    D. Huang, Y. Luo, S. Li, B. Zhang, Y. Shen, M. Wang, Nano Res. 7, 1054–1064 (2014)

  25. 25.

    J. Tang, J. Liu, C. Li, Y. Li, M.O. Tade, S. Dai, Y. Yamauchi, Angew. Chem. Int. Ed. 54, 588–593 (2015)

  26. 26.

    H. Xue, T. Wang, J. Zhao, H. Gong, J. Tang, H. Guo, X. Fan, J. He, Carbon 104, 10–19 (2016)

  27. 27.

    J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, D. Zhao, Adv. Funct. Mater. 23, 2322–2328 (2013)

  28. 28.

    J. Song, T. Xu, M.L. Gordin, P. Zhu, D. Lv, Y.B. Jiang, Y. Chen, Y. Duan, D. Wang, Adv. Funct. Mater. 24, 1243–1250 (2014)

  29. 29.

    T. Xing, Y. Zheng, L. Li, B. Cowie, D. Gunzelmann, S. Qiao, S. Huang, Y. Chen, ACS Nano 8, 6856–6862 (2014)

  30. 30.

    Y. Shao, S. Zhang, M. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. Aksay, Y. Lin, J. Mater. Chem. 20, 7491–7496 (2010)

  31. 31.

    H. Gasteiger, S. Kocha, B. Sompalli, F. Wagner, Appl. Catal., B 56, 9–35 (2005).

  32. 32.

    D. Wang, Z. Li, L. Chen, J. Am. Chem. Soc. 128, 15078–15079 (2006)

  33. 33.

    Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu and D. Y. Zhao, Angew. Chem., Int. Ed. 44, 7053–7059 (2005).

  34. 34.

    X. Fan, Z. Peng, R. Ye, H. Zhou, X. Guo, ACS Nano 9, 7407–7418 (2015)

  35. 35.

    T. Sun, Q. Wu, R. Che, Y. Bu, Y. Jiang, Y. Li, L. Yang, X. Wang, Z. Hu, ACS Catal. 5, 1857–1862 (2015)

  36. 36.

    M. Thube, S. Kulkarni, D. Huerta, A. Nigavekar, Phys. Rev. B 34, 6874–6879 (1986)

  37. 37.

    A. Fan, C. Qin, X. Zhang, J. Yang, J. Ge, S. Wang, X. Yuan, S. Wang, X. Dai, J. Mater. Chem. A (2019). https://doi.org/10.1039/C9TA08594G

  38. 38.

    Y. Dong, J. Li, Chem. Commun. 51, 572–575 (2015)

  39. 39.

    Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S.C. Smith, M. Jaroniec, J. Am. Chem. Soc. 133, 20116–20119 (2011)

  40. 40.

    H. Xue, J. Zhao, J. Tang, H. Gong, P. He, H. Zhou, J. He, Chem. Eur. J. 22, 4915–4923 (2016)

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (11575084 and 51602153), the Natural Science Foundation of Jiangsu Province (BK20160795 and BK20190413), the Fundamental Research Funds for the Central Universities (No. NE2018104), Natural Science Foundation of Zhejiang Province (No. LQ18B010005), the China Postdoctoral Science Foundation (No. 2019M661825) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) are greatly appreciated.

Author information

Correspondence to Jianping He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Guo, H., Xue, H. et al. N-Doped ordered porous carbon decorated with WN and Ni nanoparticles for enhanced electrocatalytic properties. J Porous Mater (2020) doi:10.1007/s10934-019-00827-6

Download citation

Keywords

  • Transition metal nitrides
  • N-doped ordered porous carbon
  • Synergistic effect
  • Catalyst
  • Oxygen reduction reaction