Catalytic decomposition of methane into hydrogen and carbon nanotubes over mesostructured silica nanoparticle-supported nickel catalysts

  • Nur Shamimie Nadzwin Hasnan
  • Sharifah Najiha TimmiatiEmail author
  • Manoj PudukudyEmail author
  • Zahira Yaakob
  • Kean Long Lim
  • Yun Hin Taufiq-Yap


Hydrogen is an alternative source of renewable energy that can be produced by methane decomposition without any COx formation. In this work, an impregnation method was used to prepare a set of Ni-based catalysts (5% to 50%) supported on mesostructured silica nanoparticles (MSNs) for its application in methane decomposition. The use of MSN as an effective support for nickel in methane decomposition was reported here for the first time. The physical, chemical and structural properties of the catalysts was studied and the results indicated that NiO was the active species in the fresh catalyst that were effectively distributed on the mesoporous surface of MSN. The reduction temperature of Ni/MSN catalysts were shifted to low temperatures with increased loading of nickel. The hydrogen yield increased with the increment of Ni amount in the catalysts. The catalytic activity of the 50% Ni/MSN catalyst showed that this catalyst was highly efficient and stable compared with other catalysts. The catalyst showed the highest hydrogen yield of 68% and remained more or less the same during 360 min of reaction. Approximately 62% of hydrogen yield was observed at the end of reaction. Further analysis on the spent catalysts confirmed that carbon nanotubes was formed over Ni/MSN catalyst with high graphitization degree.


Hydrogen production Mesostructured silica nanoparticles Ni/MSN catalysts Carbon nanotubes Surface catalysis 



This work was financed by Universiti Kebangsaan Malaysia (Grant Nos. GUP-2016-007 and FRGS/2/2014/ST05/UKM/03/1). The authors wish to thank the university administration for the financial support. The authors also acknowledge the Centre of Research and Instrumentation Management (CRIM) and Faculty of Science and Technology (FST), UKM for the material characterization. M. Pudukudy acknowledges China Postdoctoral Science Foundation (Grant No. 2019M653845XB) and Postdoctoral Research Funding of Kunming University of Science and Technology (Grant No. 10988880) for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    P. Hoffmann, Tomorrow’s Energy: Hydrogen, Fuel Cells and the Prospects for a Cleaner Planet (The MIT Press, London, 2012)CrossRefGoogle Scholar
  2. 2.
    P. Kruger, Alternative Energy Resources: The Quest for Sustainable Energy (Wiley, Hoboken, 2006)Google Scholar
  3. 3.
    A. Kumar, J.P. Chakraborty, R. Singh, Bio-oil: the future of hydrogen generation. Biofuels (2016). CrossRefGoogle Scholar
  4. 4.
    P. Mierczynski, K. Vasilev, A. Mierczynska, W. Maniukiewicz, R. Ciesielski, J. Rogowski, I.M. Szynkowska, A.Y. Trifonov, S.V. Dubkov, D.G. Gromov, T.P. Maniecki, The effect of gold on modern bimetallic Au–Cu/MWCNT catalysts for the oxy-steam reforming of methanol. Catal. Sci. Technol. 6, 4168–4183 (2016). CrossRefGoogle Scholar
  5. 5.
    N.D. Subramanian, J. Callison, C.R.A. Catlow, P.P. Wells, N. Dimitratos, Optimised hydrogen production by aqueous phase reforming of glycerol on Pt/Al2O3. Int. J. Hydrog. Energy 1, 1–10 (2016). CrossRefGoogle Scholar
  6. 6.
    Y. Jiao, J. Zhang, Y. Du, F. Li, C. Li, J. Lu, J. Wang, Y. Chen, Hydrogen production by catalytic steam reforming of hydrocarbon fuels over Ni/Ce–Al2O3 bifunctional catalysts: effects of SrO addition. Int. J. Hydrog. Energy 41, 13436–13447 (2016). CrossRefGoogle Scholar
  7. 7.
    A.L. Alberton, M.M.V.M. Souza, M. Schmal, Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts. Catal. Today 123, 257–264 (2007). CrossRefGoogle Scholar
  8. 8.
    K. Takeishi, Y. Akaike, Hydrogen production by dimethyl ether steam reforming over copper alumina catalysts prepared using the sol–gel method. Appl. Catal. A Gen. 510, 20–26 (2016). CrossRefGoogle Scholar
  9. 9.
    K.K. Pant, R. Jain, S. Jain, Renewable hydrogen production by steam reforming of glycerol over Ni/CeO2 catalyst prepared by precipitation deposition method. Korean J. Chem. Eng. 28, 1859–1866 (2011). CrossRefGoogle Scholar
  10. 10.
    E. Gallegos-Suárez, A. Guerrero-Ruiz, I. Rodríguez-Ramos, Efficient hydrogen production from glycerol by steam reforming with carbon supported ruthenium catalysts. Carbon 96, 578–587 (2016). CrossRefGoogle Scholar
  11. 11.
    K.C. Mondal, S.R. Chandran, Evaluation of the economic impact of hydrogen production by methane decomposition with steam reforming of methane process. Int. J. Energy Res. 39, 2–6 (2014). CrossRefGoogle Scholar
  12. 12.
    S. Li, M. Li, C. Zhang, S. Wang, X. Ma, J. Gong, Steam reforming of ethanol over Ni/ZrO2 catalysts: effect of support on product distribution. Int. J. Hydrogen Energy 37, 2940–2949 (2012). CrossRefGoogle Scholar
  13. 13.
    X. Zhang, A. Kätelhön, G. Sorda, M. Helmin, M. Rose, A. Bardow, M. Reinhard, R. Palkovits, A. Mitsos, CO2 mitigation costs of catalytic methane decomposition. Energy 151, 826–838 (2018). CrossRefGoogle Scholar
  14. 14.
    K. Srilatha, D. Bhagawan, S.S. Kumar, V. Himabindu, Sustainable fuel production by thermocatalytic decomposition of methane–a review. S. Afr. J. Chem. Eng. (2017). CrossRefGoogle Scholar
  15. 15.
    A.S. Al-Fatesh, A.H. Fakeeha, W.U. Khan, A.A. Ibrahim, S. He, K. Seshan, Production of hydrogen by catalytic methane decomposition over alumina supported mono-, bi- and tri-metallic catalysts. Int. J. Hydrog. Energy 41, 22932–22940 (2016). CrossRefGoogle Scholar
  16. 16.
    J. Majewska, B. Michalkiewicz, Production of hydrogen and carbon nanomaterials from methane using Co/ZSM-5 catalyst. Int. J. Hydrog. Energy. 41, 8668–8678 (2016). CrossRefGoogle Scholar
  17. 17.
    A. Rastegarpanah, F. Meshkani, M. Rezaei, Thermocatalytic decomposition of methane over mesoporous nanocrystalline promoted Ni/MgO·Al2O3 catalysts. Int. J. Hydrog. Energy 42, 16476–16488 (2017). CrossRefGoogle Scholar
  18. 18.
    G.D.B. Nuernberg, E.L. Foletto, C.E.M. Campos, H.V. Fajardo, N.L.V. Carre, Direct decomposition of methane over Ni catalyst supported in magnesium aluminate. J. Power Sources 208, 409–414 (2012). CrossRefGoogle Scholar
  19. 19.
    J. Li, Y. Gong, C. Chen, J. Hou, L. Yue, X. Fu, L. Zhao, H. Chen, H. Wang, S. Peng, Evolution of the Ni-Cu-SiO2 catalyst for methane decomposition to prepare hydrogen. Fusion Eng. Des. (2017). CrossRefGoogle Scholar
  20. 20.
    Z. Bai, H. Chen, B. Li, W. Li, Methane decomposition over Ni loaded activated carbon for hydrogen production and the formation of filamentous carbon. Int. J. Hydrog. Energy 32, 32–37 (2007). CrossRefGoogle Scholar
  21. 21.
    A.E. Awadallah, S.M. Solyman, A.A. Aboul-Enein, H.A. Ahmed, N.A.K. Aboul-Gheit, S.A. Hassan, Effect of combining Al, Mg, Ce or La oxides to extracted rice husk nanosilica on the catalytic performance of NiO during COx -free hydrogen production via methane decomposition. Int. J. Hydrog. Energy (2017). CrossRefGoogle Scholar
  22. 22.
    I. Abdullahi, N. Sakulchaicharoen, J.E. Herrera, A mechanistic study on the growth of multi-walled carbon nanotubes by methane decomposition over nickel-alumina catalyst. Diam. Relat. Mater. 23, 76–82 (2012). CrossRefGoogle Scholar
  23. 23.
    M. Pudukudy, Z. Yaakob, M.S. Takriff, Methane decomposition over Pd promoted Ni/MgAl2O4 catalyst for the production of COx free hydrogen and multiwalled carbon nanotubes. Appl. Surf. Sci. (2015). CrossRefGoogle Scholar
  24. 24.
    M. Pudukudy, Z. Yaakob, A. Kadier, M.S. Takriff, N.S. Mat Hassan, One-pot sol-gel synthesis of Ni/TiO2 catalysts for methane decomposition into COx free hydrogen and multiwalled carbon nanotubes. Int. J. Hydrog. Energy 1, 1–19 (2017)Google Scholar
  25. 25.
    W. Gac, A. Denis, T. Borowiecki, L. Kepiński, Methane decomposition over Ni–MgO–Al2O3 catalysts. Appl. Catal. A Gen. 357, 236–243 (2009). CrossRefGoogle Scholar
  26. 26.
    K. Salipira, N.J. Coville, M.S. Scurrell, Carbon produced by the catalytic decomposition of methane on nickel: carbon yields and carbon structure as a function of catalyst properties. J. Nat. Gas Sci. Eng. 32, 501–511 (2016). CrossRefGoogle Scholar
  27. 27.
    R. Huirache-Acuña, R. Nava, C.L. Peza-Ledesma, J. Lara-Romero, G. Alonso-Núñez, B. Pawelec, Rivera-Muñoz, SBA-15 mesoporous silica as catalytic support for hydrodesulfurization catalysts—review. Materials 6, 4139–4167 (2013). CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    J.C. Guevara, J.A. Wang, L.F. Chen, M.A. Valenzuela, P. Salas, A. García-Ruiz, J.A. Toledo, M.A. Cortes-Jácome, C. Angeles-Chavez, O. Novaro, Ni/Ce-MCM-41 mesostructured catalysts for simultaneous production of hydrogen and nanocarbon via methane decomposition. Int. J. Hydrog. Energy 35, 3509–3521 (2010). CrossRefGoogle Scholar
  29. 29.
    M. Pudukudy, Z. Yaakob, Z.S. Akmal, Direct decomposition of methane over Pd promoted Ni/SBA-15 catalyst. Appl. Surf. Sci. (2015). CrossRefGoogle Scholar
  30. 30.
    G. Gómez, J.A. Botas, D.P. Serrano, P. Pizarro, Hydrogen production by methane decomposition over pure silica SBA-15 materials. Catal. Today (2015). CrossRefGoogle Scholar
  31. 31.
    G. Urdiana, R. Valdez, G. Lastra, M.A. Valenzuela, A. Olivas, Production of hydrogen and carbon nanomaterials using transition metal catalysts through methane decomposition. Mater. Lett. (2018). CrossRefGoogle Scholar
  32. 32.
    C. Tanggarnjanavalukul, W. Donphai, T. Witoon, M. Chareonpanich, J. Limtrakul, Deactivation of nickel catalysts in methane cracking reaction: effect of bimodal meso-macropore structure of silica support. Chem. Eng. J. 262, 364–371 (2015). CrossRefGoogle Scholar
  33. 33.
    Y. Lou, G. Toquer, S. Dourdain, C. Rey, C. Grygiel, D. Simeone, X. Deschanels, Structure evolution of mesoporous silica SBA-15 and MCM-41 under swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. B. 365, 336–341 (2015). CrossRefGoogle Scholar
  34. 34.
    R.Y. Abrokwah, V.G. Deshmane, D. Kuila, Comparative performance of M-MCM-41 (M: Cu Co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol. J. Mol. Catal. A: Chem. (2016). CrossRefGoogle Scholar
  35. 35.
    O. Verho, F. Gao, E.V. Johnston, W. Wan, A. Nagendiran, H. Zheng, J.-E. Backvall, X. Zou, Mesoporous silica nanoparticles applied as a support for Pd and Au nanocatalysts in cycloisomerization reactions. APL Mater. (2014). CrossRefGoogle Scholar
  36. 36.
    M.A.A. Aziz, A.A. Jalil, S. Triwahyono, M.W.A. Saad, CO2 methanation over Ni-promoted mesostructured silica nanoparticles: influence of Ni loading and water vapor on activity and response surface methodology studies. Chem. Eng. J. 260, 757–764 (2015). CrossRefGoogle Scholar
  37. 37.
    S.M. Sidik, S. Triwahyono, A.A. Jalil, Z.A. Majid, N. Salamun, N.B. Talib, T.A.T. Abdullah, CO2 reforming of CH4 over Ni-Co/MSN for syngas production: role of Co as a binder and optimization using RSM. Chem. Eng. J. 295, 1–10 (2016). CrossRefGoogle Scholar
  38. 38.
    S.M. Sidik, A. Abdul Jalil, S. Triwahyono, U.A. Asli, CO2 reforming of methane over Ni supported on mesostructured silica nanoparticles (Ni/MSN) effect of Ni loading. J. Teknol. 78, 13–18 (2016). CrossRefGoogle Scholar
  39. 39.
    J.L. Pinilla, R. Utrilla, R.K. Karn, I. Suelves, M.J. Lázaro, R. Moliner, A.B. García, J.N. Rouzaud, High temperature iron-based catalysts for hydrogen and nanostructured carbon production by methane decomposition. Int. J. Hydrog. Energy. 36, 7832–7843 (2011)CrossRefGoogle Scholar
  40. 40.
    M. Pudukudy, A. Kadier, Z. Yaakob, M.S. Takriff, Non-oxidative thermocatalytic decomposition of methane into COx free hydrogen and nanocarbon over unsupported porous NiO and Fe2O3 catalysts. Int. J. Hydrog. Energy. (2016). CrossRefGoogle Scholar
  41. 41.
    M.A.A. Aziz, A.A. Jalil, S. Triwahyono, S.M. Sidik, Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles. Appl. Catal. A Gen. 486, 115–122 (2014). CrossRefGoogle Scholar
  42. 42.
    M. Pudukudy, Z. Yaakob, Methane decomposition over Ni, Co and Fe based monometallic catalysts supported on sol gel derived SiO2 microflakes. Chem. Eng. J. 262, 1009–1021 (2015). CrossRefGoogle Scholar
  43. 43.
    A.E. Awadallah, A.A. Aboul-Enein, A.K. Aboul-Gheit, Various nickel doping in commercial Ni–Mo/Al2O3 as catalyst for natural gas decomposition to COx–free hydrogen production. Renew. Energy 57, 671–678 (2013). CrossRefGoogle Scholar
  44. 44.
    G. Naresh, V. Vijay Kumar, C. Anjaneyulu, J. Tardio, S.K. Bhargava, J. Patel, A. Venugopal, Nano size Hβ zeolite as an effective support for Ni and Ni-Cu for COx free hydrogen production by catalytic decomposition of methane. Int. J. Hydrog. Energy (2016). CrossRefGoogle Scholar
  45. 45.
    J. Salmones, J.A. Wang, M.A. Valenzuela, E. Sánchez, A. Garcia, Pore geometry influence on the deactivation behavior of Ni-based catalysts for simultaneous production of hydrogen and nanocarbon. Catal. Today 148, 134–139 (2009). CrossRefGoogle Scholar
  46. 46.
    C. García-Sancho, R. Guil-López, L. Pascual, P. Maireles-Torres, R.M. Navarro, J.L.G. Fierro, Optimization of nickel loading of mixed oxide catalyst ex-hydrotalcite for H2 production by methane decomposition. Appl. Catal. A Gen. (2017). CrossRefGoogle Scholar
  47. 47.
    A.E. Awadallah, M.S. Mostafa, A.A. Aboul-Enein, S.A. Hanafi, Hydrogen production via methane decomposition over Al2O3–TiO2 binary oxides supported Ni catalysts: effect of Ti content on the catalytic efficiency. Fuel 129, 68–77 (2014). CrossRefGoogle Scholar
  48. 48.
    M. Pudukudy, Z. Yaakob, M.Z. Mazuki, M.S. Takriff, S.S. Jahaya, One-pot sol-gel synthesis of MgO nanoparticles supported nickel and iron catalysts for undiluted methane decomposition into COx free hydrogen and nanocarbon. Appl. Catal. B Environ. 218, 298–316 (2017). CrossRefGoogle Scholar
  49. 49.
    A.E. Awadallah, D.S. El-Desouki, N.A.K. Aboul-Gheit, A.H. Ibrahim, A.K. Aboul-Gheit, Effect of crystalline structure and pore geometry of silica based supported materials on the catalytic behavior of metallic nickel particles during methane decomposition to COx-free hydrogen and carbon nanomaterials. Int. J. Hydrog. Energy (2016). CrossRefGoogle Scholar
  50. 50.
    M. Pudukudy, Z. Yaakob, Q. Jia, M.S. Takriff, Catalytic decomposition of methane over rare earth metal (Ce and La) oxides supported iron catalysts. Appl. Sur. Sci. 467–468, 236–248 (2019). CrossRefGoogle Scholar
  51. 51.
    M. Pudukudy, Z. Yaakob, Q. Jia, M.S. Takriff, Catalytic decomposition of undiluted methane into hydrogen and carbon nanotubes over Pt promoted Ni/CeO2 catalysts. New J. Chem. 42, 14843–14856 (2018). CrossRefGoogle Scholar
  52. 52.
    A.E. Awadallah, A.A. Aboul-Enein, A.K. Aboul-Gheit, Effect of progressive Co loading on commercial Co–Mo/Al2O3 catalyst for natural gas decomposition to COx-free hydrogen production and carbon nanotubes. Energy Convers. Manag. 77, 143–151 (2014). CrossRefGoogle Scholar
  53. 53.
    A.E. Awadallah, A.A. Aboul-Enein, D.S. El-Desouki, A.K. Aboul-Gheit, Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group VIII catalysts. Appl. Sur. Sci. 296, 100–107 (2014). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fuel Cell InstituteUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Faculty of Chemical EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  3. 3.Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia
  4. 4.Catalysis Science and Technology Research Centre, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations