Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Iota-carrageenan based magnetic aerogels as an efficient adsorbent for heavy metals from aqueous solutions

  • 201 Accesses

  • 1 Citations

Abstract

Magnetic aerogels were prepared via physical cross-linking of Iota-carrageenan and polyamidoamine (PAMAM) dendrimer using different amounts of magnetic nanoparticles (1, 3 and 5%). A blank sample of chemically cross-linked Iota-carrageenan was prepared for comparison. The prepared magnetic nanoparticles and aerogels were fully characterized using particle size analyzer, X-ray diffraction (XRD), vibrating Sample Magnetometer (VSM), FT-IR, SEM and energy-dispersive X-ray (EDX). The surface area and porosity were calculated using Brunauer, Emmett, and Teller (BET), Barrett, Joyner and Halenda (BJH) equations. The nitrogen contents of the aerogels were determined using the Kjeldal method. These aerogels are environmentally safe, eco-friendly and cheap. The adsorption behavior of the aerogels was evaluated for Cr (VI), Co2+, Cu2+, Cd2+, Mn7+, and Alphanol fast blue dye. The synergetic effect for the presence of the chelating groups with different natures (i.e. sulfate and amine) was revealed via the high ability of the aerogels to remove the cations and oxyanions in a similar manner. The prepared aerogels had high removal efficiency with selectivity order Co2+ > Cu2+ > Mn7+ > Cd2+ > Cr (VI). The maximum adsorption efficiency of Co2+ was 99% achieved by using CAR M3.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    J. Wang, X. Lu, P.F. Ng, K.I. Lee, B. Fei, J.H. Xin, J.-Y. Wu, J. Colloid Interface Sci. 440, 32–38 (2015)

  2. 2.

    L. Hajiaghababaei, A. Badiei, M.R. Ganjali, S. Heydari, Y. Khaniani, G.M. Ziarani, Desalination 266(1), 182–187 (2011)

  3. 3.

    A. Azari, B. Kakavandi, R.R. Kalantary, E. Ahmadi, M. Gholami, Z. Torkshav, M. Azizi, J. Porous Mater. 22(4), 1083–1096 (2015)

  4. 4.

    L.S. Oliveira, A.S. Franca, T.M. Alves, S.D.F. Rocha, J. Hazard Mater. 155(3), 507–512 (2008)

  5. 5.

    T. Saito, S. Brown, S. Chatterjee, J. Kim, C. Tsouris, R.T. Mayes, L.-J. Kuo, G. Gill, Y. Oyola, C.J. Janke, S. Dai, J. Mater. Chem. A 2(35), 14674–14681 (2014)

  6. 6.

    M. Kasanmascheff, W. Lee, T.U. Nick, J. Stubbe, M. Bennati, Chem. Sci. 7(3), 2170–2178 (2016)

  7. 7.

    R. Wang, S. Guan, A. Sato, X. Wang, Z. Wang, R. Yang, B.S. Hsiao, B. Chu, J. Membr. Sci. 446, 376–382 (2013)

  8. 8.

    J. Ge, J. Xiao, L. Liu, L. Qiu, X. Jiang, J. Porous Mater. 23(3), 791–800 (2016)

  9. 9.

    T.A. Khattab, S. Dacrory, H. Abou-Yousef, S. Kamel, Carbohyd. Polym. 210, 196–203 (2019)

  10. 10.

    F.H.H. Abdellatif, J. Babin, C. Arnal-Herault, L. David, A. Jonquieres, Carbohyd. Polym. 196, 176–186 (2018)

  11. 11.

    M.M. Abdellatif, S. Acherar, Tetrahedron Lett. 58(12), 1216–1218 (2017)

  12. 12.

    K. Dutta, S. De, Environ. Sci. 3(5), 793–805 (2017)

  13. 13.

    H.M. Ahmed, M.M. Abdellatif, S. Ibrahim, F.H.H. Abdellatif, Org. Surf. Coat. 129, 52–58 (2019)

  14. 14.

    M.A. Yassin, A.A.M. Gad, A.F. Ghanem, M.H.A. Rehim, Carbohyd. Polym. 205, 255–260 (2019)

  15. 15.

    M. Hartmann, W. Schwieger, Chem. Soc. Rev. 45, 3311–3312 (2016)

  16. 16.

    M.E. Davis, Nature 417, 813–821 (2002)

  17. 17.

    C. Tian, J. She, Y. Wu, S. Luo, Q. Wu, Y. Qing, Polym. Compos. 39(12), 4442–4451 (2015)

  18. 18.

    Y. Huang, S. Li, S. Yu, S. Lyu, G. Liu, D. Cao, J. Biobased Mater. Bioenergy 12(5), 425–431 (2018)

  19. 19.

    Sertsing S, Chukeaw T, Pengpanich S, Pornchuti B (2018) MATEC Web Conf. 156.

  20. 20.

    A.K. Meena, G.K. Mishra, P.K. Rai, C. Rajagopal, P.N. Nagar, J. Hazard. Mater. 122(1), 161–170 (2005)

  21. 21.

    M. Sangermano, M. Naguib, M. Messori, Macromol. Mater. Eng. 298, 1184–1189 (2013)

  22. 22.

    T.A. Khattab, S. Dacrory, H. Abou-Yousef, S. Kamel, Talanta 210, 120166 (2019)

  23. 23.

    M.B.F.V. Raap, F.H. Sànchez, C.E.R. Torres, L. Casas, A. Roig, E. Molins, J. Phys. 17(41), 6519–6531 (2005)

  24. 24.

    S. Liu, Q. Yan, D. Tao, T. Yu, X. Liu, Carbohyd. Polym. 89(2), 551–557 (2012)

  25. 25.

    A.C. Pierre, G.M. Pajonk, Chem. Rev. 102(11), 4243–4266 (2002)

  26. 26.

    Yassin MA, Naguib M, Rehim MHA, Ali KA (2018) J. Text., Color. Polym. Sci. 15(1), 85–93.

  27. 27.

    A.W. Thomson, E.F. Fowler, Agents Actions 11(3), 265–273 (1981)

  28. 28.

    T. Karbowiak, F. Debeaufort, D. Champion, A. Voilley, J. Colloid Interface Sci. 294(2), 400–410 (2006)

  29. 29.

    M.L. Weiner, Crit. Rev. Toxicol. 44(3), 244–269 (2014)

  30. 30.

    H.-Z. Zhang, Z.-L. Xu, J.-Y. Sun, RSC Adv. 8(51), 29455–29463 (2018)

  31. 31.

    B. Hayati, A. Maleki, F. Najafi, H. Daraei, F. Gharibi, G. McKay, J. Hazard. Mater. 336, 146–157 (2017)

  32. 32.

    A. Maleki, B. Hayati, F. Najafi, F. Gharibi, S.W. Joo, J. Mol. Liq. 224, 95–104 (2016)

  33. 33.

    W.-P. Zhu, J. Gao, S.-P. Sun, S. Zhang, T.-S. Chung, J. Membr. Sci. 487, 117–126 (2015)

  34. 34.

    H. Yoo, S.-Y. Kwak, J. Membr. Sci. 448, 125–134 (2013)

  35. 35.

    K.N. Han, B.Y. Yu, S.-Y. Kwak, J. Membr. Sci. 396, 83–91 (2012)

  36. 36.

    C.I. Adams, G.H. Spaulding, Anal. Chem. 27, 1003–1004 (1955)

  37. 37.

    T.A. Khattab, S. Abdelmoez, T.M. Klapötke, Chemistry 22(12), 4157–4163 (2016)

  38. 38.

    S.H. Chaki, T.J. Malek, M.D. Chaudhary, J.P. Tailor, M.P. Deshpande, Adv. Nat. Sci. 6, 1–6 (2015)

  39. 39.

    W. Yingnakhon, K. Srikulkit, Asian J. Chem. 25(7), 4009–4012 (2013)

  40. 40.

    J.L. Rowsell, O.M. Yaghi, Microporous Mesoporous Mater. 73, 3–14 (2004)

  41. 41.

    H. Gu, H. Zhang, C. Ma, H. Sun, C. Liu, K. Dai, J. Zhang, R. Wei, T. Ding, Z. Guo, J. Mater. Chem. C 7(8), 2353–2360 (2019)

  42. 42.

    S.E. Bakarich, P. Balding, R. Gorkin III, G.M. Spinks, RSC Adv. 4(72), 38088–38092 (2014)

  43. 43.

    A. Awadhiya, D. Kumar, V. Verma, Carbohyd. Polym. 151, 60–67 (2016)

  44. 44.

    L. Yu, H. Wu, B. Wu, Z. Wang, H. Cao, C. Fu, N. Jia, Nano-Micro Lett. 6(3), 258–267 (2014)

  45. 45.

    S.J. Gregg, K.S.W. Wing, H.W. Salzberg, J. Electrochem. Soc. 114, 279C (1967)

  46. 46.

    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)

  47. 47.

    Y.H. Tan, J.A. Davis, K. Fujikawa, N.V. Ganesh, A.V. Demchenko, K.J. Stine, J. Mater. Chem. 22(14), 6733–6745 (2012)

Download references

Acknowledgements

The authors thank research projects sector—National Research Centre for analysis funding.

Author information

Correspondence to Mohamed Mehawed Abdellatif or Faten Hassan Hassan Abdellatif.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 961 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdellatif, M.M., Soliman, S.M.A., El-Sayed, N.H. et al. Iota-carrageenan based magnetic aerogels as an efficient adsorbent for heavy metals from aqueous solutions. J Porous Mater 27, 277–284 (2020). https://doi.org/10.1007/s10934-019-00812-z

Download citation

Keywords

  • Iota-carrageenan
  • Magnetic nanoparticles
  • Aerogel
  • Adsorption
  • Heavy metal ions