Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

TPSR study: effect of microwave radiation on the physicochemical properties of Fe/ZSM-5 in the methanol to hydrocarbons (MTH) process

  • 111 Accesses

  • 1 Citations

Abstract

The effect of microwave radiation on 0.5Fe/ZSM-5 catalysts (0.5 wt% Fe) active in the conversion of methanol to hydrocarbons was studied. Radiation was applied as a post-synthesis step using the solid catalyst only. No solvents or other liquid-phase was used. Changes in surface properties effected by the use of radiation were monitored using temperature programmed surface reaction (TPSR) and other methods of characterization used included p-XRD, SEM, BET, FT-IR, and TGA. This work is what we believe is the first time that such a study has been carried out for methanol conversion. A series of 0.5Fe/ZSM-5 based catalysts were prepared by the impregnation of HZSM-5 zeolite (Si/Al = 30 or 80) with iron with subsequent microwave radiation at various power levels in the range 0–700 W. The duration of radiation exposure was constant at 10 s. It was found that microwave radiation induced few changes in the bulk properties of the 0.5Fe/ZSM-5 catalysts, though there were some changes noted in their textural properties. In contrast, their surface and catalytic behavior were markedly changed. Microwave irradiation enhanced crystallinity and mesoporous growth, decreased coke and methane formation, and decreased surface area and micropore volume as the microwave power level was increased from 0 to 700 W. From the TPSR data, it was observed that exposure to microwave radiation affects the amounts and maximum desorption temperatures (Tmax) of the evolved aliphatic and aromatic hydrocarbons. Microwave radiation shifted the Tmax values of the MTH products over the HZSM-5(30) and HZSM-5(80)-based catalysts to lower and higher values, respectively. Effects of microwave radiation were more pronounced on HZSM-5(80)-based catalysts than HZSM-5(30)-based catalysts. More C2–C5 aliphatic hydrocarbons evolved than aromatics (BTX). The MeOH-TPSR profiles showed that methanol was converted to DME and subsequently converted to aliphatic and aromatic hydrocarbons. It is reasonable to suggest that microwave radiation could be a useful post-synthesis modification step to produce catalysts that show reduced coke and methane formation and increase catalyst activity and selectivity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    T. Mokrani, M. Scurrell, Catal. Rev. 51, 1 (2009)

  2. 2.

    H. Chen, Y. Wang, F. Meng, C. Sun, H. Li, Z. Wang, F. Gao, X. Wang, S. Wang, Microporous Mesoporous Mater. 244, 301 (2017)

  3. 3.

    W. Wu, W. Guo, W. Xiao, M. Luo, Fuel Process. Technol. 108, 19 (2013)

  4. 4.

    H. Zhang, Z. Ning, H. Liu, J. Shang, S. Han, D. Jiang, Y. Jiang, Y. Guo, RSC Adv. 7, 16602 (2017)

  5. 5.

    M. Bjørgen, F. Joensen, M.S. Holm, U. Olsbye, K.P. Lillerud, S. Svelle, Appl. Catal. A. 345, 43 (2008)

  6. 6.

    Z. Hu, H. Zhang, L. Wang, H. Zhang, Y. Zhang, H. Xu, W. Shen, Y. Tang, Catal. Sci. Technol. 4, 2891 (2014)

  7. 7.

    J. Liu, G. Jiang, Y. Liu, J. Di, Y. Wang, Z. Zhao, Q. Sun, C. Xu, J. Gao, A. Duan, J. Liu, Sci. Rep. 4, 7276 (2014)

  8. 8.

    L. Meng, B. Mezari, M.G. Goesten, E.J. Hensen, Chem. Mater. 29, 4091 (2017)

  9. 9.

    L. Meng, B. Mezari, M.G. Goesten, W. Wannapakdee, R. Pestman, L. Gao, J. Wiesfeld, E.J. Hensen, Catal. Sci. Technol. 7, 4520 (2017)

  10. 10.

    F. Pan, X. Lu, Q. Zhu, Z. Zhang, Y. Yan, T. Wang, S. Chen, J. Mater. Chem. A. 2, 20667 (2014)

  11. 11.

    K. Shen, N. Wang, W. Qian, Y. Cui, F. Wei, Catal. Sci. Technol. 4, 3840 (2014)

  12. 12.

    Q. Wang, S. Xu, J. Chen, Y. Wei, J. Li, D. Fan, Z. Yu, Y. Qi, Y. He, S. Xu, C. Yuan, RSC Adv. 4, 21479 (2014)

  13. 13.

    S. Mintova, J.P. Gilson, V. Valtchev, Nanoscale 5, 6693 (2013)

  14. 14.

    R.M. Mohamed, O.A. Fouad, A.A. Ismail, I.A. Ibrahim, Mater. Lett. 59, 3441 (2005)

  15. 15.

    Y. Zhu, Z. Hua, J. Zhou, L. Wang, J. Zhao, Y. Gong, W. Wu, M. Ruan, J. Shi, Chem. Eur. J. 17, 14618 (2011)

  16. 16.

    G. Majano, A. Darwiche, S. Mintova, V. Valtchev, Ind. Eng. Chem. Res. 48, 7084 (2009)

  17. 17.

    T. Xue, L. Chen, Y.M. Wang, M.Y. He, Microporous Mesoporous Mater. 156, 97 (2012)

  18. 18.

    N. Ren, Z.J. Yang, X.C. Lv, J. Shi, Y.H. Zhang, Y. Tang, Microporous Mesoporous Mater. 131, 103 (2010)

  19. 19.

    Y. Gao, G. Wu, F. Ma, C. Liu, F. Jiang, Y. Wang, A. Wang, Microporous Mesoporous Mater. 226, 251 (2016)

  20. 20.

    S. Frisch, L.M. Rösken, J. Caro, M. Wark, Microporous Mesoporous Mater. 120, 47 (2009)

  21. 21.

    W.C. Yoo, S. Kumar, Z. Wang, N.S. Ergang, W. Fan, G.N. Karanikolos, A.V. McCormick, R.L. Penn, M. Tsapatsis, A. Stein, Angew. Chem. Int. Ed. 47, 9096 (2008)

  22. 22.

    B. Kalita, A.K. Talukdar, Mater. Res. Bull. 44, 254 (2009)

  23. 23.

    G. Reding, T. Mäurer, B. Kraushaar-Czarnetzki, Microporous Mesoporous Mater. 57, 83 (2003)

  24. 24.

    J. Ahmadpour, M. Taghizadeh, J. Nat. Gas Sci. Eng. 23, 184 (2015)

  25. 25.

    Z. Wan, W. Wu, W. Chen, H. Yang, D. Zhang, Ind. Eng. Chem. Res. 53, 19471 (2014)

  26. 26.

    Y. Zhang, K. Zhu, X. Duan, P. Li, X. Zhou, W. Yuan, RSC Adv. 4, 14471 (2014)

  27. 27.

    J. Čejka, S. Mintova, Catal. Rev. 49, 457 (2007)

  28. 28.

    S. Van Donk, A.H. Janssen, J.H. Bitter, K.P. de Jong, Catal. Rev. 45, 297 (2003)

  29. 29.

    D. Verboekend, J. Pérez-Ramírez, Catal. Sci. Technol. 1, 879 (2011)

  30. 30.

    R.M. Behbahani, A.S. Mehr, J. Nat. Gas Sci. Eng. 18, 433 (2014)

  31. 31.

    C.S. Triantafillidis, A.G. Vlessidis, L. Nalbandian, N.P. Evmiridis, Microporous Mesoporous Mater. 47, 369 (2001)

  32. 32.

    Z. Wei, T. Xia, M. Liu, Q. Cao, Y. Xu, K. Zhu, X. Zhu, Front. Chem. Sci. Eng. 9, 450 (2015)

  33. 33.

    Y. Jia, J. Wang, K. Zhang, G. Chen, Y. Yang, S. Liu, C. Ding, Y. Meng, P. Liu, Powder Technol. 328, 415 (2018)

  34. 34.

    F. Wei, Q. Zhang, H. Wu, C. Cao, W. Song, Sci. China Chem. 60, 1588 (2017)

  35. 35.

    L. Xing, Z. Wei, Z. Wen, X. Zhu, Pet. Sci. Technol. 35, 2235 (2017)

  36. 36.

    J. Kim, M. Choi, R. Ryoo, J. Catal. 269, 219 (2010)

  37. 37.

    X. Meng, F. Nawaz, F.S. Xiao, Nano Today. 4, 292 (2009)

  38. 38.

    Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. 106, 896 (2006)

  39. 39.

    Y. Wang, J. Song, N.C. Baxter, G.T. Kuo, S. Wang, J. Catal. 349, 53 (2017)

  40. 40.

    N. Janjic, M.S. Scurrell, Catal. Commun. 3, 6 (2002)

  41. 41.

    M.W. Dlamini, N.J. Coville, M.S. Scurrell, RSC Adv. 6, 27 (2016)

  42. 42.

    E. Mohiuddin, N.J. Coville, M.S. Scurrell, Curr. Microwave Chem. 4, 4 (2017)

  43. 43.

    W.M. Dlamini, N.J. Coville, M.S. Scurrell, J. Mol. Catal. A: Chem. 409, 19–25 (2015)

  44. 44.

    L.Z. Linganiso, M.S. Scurrell, Curr. Microwave Chem. 4, 3 (2017)

  45. 45.

    Q. Yu, C. Cui, Q. Zhang, J. Chen, Y. Li, J. Sun, C. Li, Q. Cui, C. Yang, H. Shan, J. Energy Chem. 22, 761 (2013)

  46. 46.

    M. Moreno-Recio, J. Santamaría-González, P. Maireles-Torres, Chem. Eng. J. 303, 22 (2016)

  47. 47.

    A. Aziz, S. Kim, K.S. Kim, J. Environ. Chem. Eng. 4, 3033 (2016)

  48. 48.

    M. Rasouli, H. Atashi, D. Mohebbi-Kalhori, N. Yaghobi, J. Taiwan Inst. Chem. Eng. 78, 438–446 (2017)

  49. 49.

    R. Anuwattana, K.J. Balkus, S. Asavapisit, P. Khummongkol, Microporous Mesoporous Mater. 111, 260 (2008)

  50. 50.

    O.G. Somani, A.L. Choudhari, B.S. Rao, S.P. Mirajkar, Mater. Chem. Phys. 82, 538 (2003)

  51. 51.

    T. Inui, H. Matsuda, O. Yamase, H. Nagata, K. Fukuda, T. Ukawa, A. Miyamoto, J. Catal. 98, 491 (1986)

  52. 52.

    A. Arafat, J.C. Jansen, A.R. Ebaid, H. Van Bekkum, Zeolites 13, 162 (1993)

  53. 53.

    Y. Li, W. Yang, J. Membr. Sci. 316, 3 (2008)

  54. 54.

    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Pure Appl. Chem. 87, 1051 (2015)

  55. 55.

    Z. Wen, T. Xia, M. Liu, K. Zhu, X. Zhu, Catal. Commun. 75, 45 (2016)

  56. 56.

    H. Schulz, Catal. Today 154, 183 (2010)

  57. 57.

    J.I. Villacampa, C. Royo, E. Romeo, J.A. Montoya, P. Del Angel, A. Monzon, Appl. Catal., A. 252, 363 (2003)

  58. 58.

    Y. Gao, B. Zheng, G. Wu, F. Ma, C. Liu, RSC Adv. 6, 83581 (2016)

  59. 59.

    P.A. Jacobs, H.K. Beyer, J. Valyon, Zeolites 1, 161 (1981)

  60. 60.

    J.C. Jansen, F.J. Van der Gaag, H. Van Bekkum, Zeolites 4, 369 (1984)

  61. 61.

    A.A. Ismail, R.M. Mohamed, O.A. Fouad, I.A. Ibrahim, Cryst. Res. Technol. 41, 145 (2006)

  62. 62.

    S. Jiang, H. Zhang, Y. Yan, X. Zhang, RSC Adv. 5, 41269 (2015)

  63. 63.

    G. Coudurier, C. Naccache, J.C. Vedrine, J. Chem. Soc., Chem. Commun. (1982). https://doi.org/10.1039/C39820001413

  64. 64.

    K.Y. Lee, S.W. Lee, S.K. Ihm, Ind. Eng. Chem. Res. 53, 10072 (2014)

  65. 65.

    D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, Appl. Catal., A. 123, 89 (1995)

Download references

Acknowledgements

We would like to acknowledge that this work has been supported in part by the National Research Foundation of South Africa (Grant Nos. 106885, 113652) and the University of South Africa. The opinions, findings and conclusions/recommendations expressed in this publication are those of the authors.

Author information

Correspondence to Michael S. Scurrell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7017 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ntelane, T.S., Masuku, C.M. & Scurrell, M.S. TPSR study: effect of microwave radiation on the physicochemical properties of Fe/ZSM-5 in the methanol to hydrocarbons (MTH) process. J Porous Mater 27, 165–177 (2020). https://doi.org/10.1007/s10934-019-00800-3

Download citation

Keywords

  • Methanol-to-hydrocarbons (MTH)
  • Microwave radiation
  • Post-synthesis modification step
  • Temperature programmed surface reaction
  • 0.5Fe/ZSM-5 catalysts