Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Controlled RAFT polymerization of MMA in confined space of various pore sizes of SBA-15

  • 94 Accesses

Abstract

A series of mesoporous SBA-15 with various pore diameter (8, 15, 22 and 27 nm) were synthesized and used as “microreactor”. Reversible addition–fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) was conducted in the channels of SBA-15 using azodiisobutyronitrile (AIBN) as initiator, ethyl xanthate ethyl propionate as chain transfer agent. The obtained PMMA/SBA-15 composites and neat PMMAs from composites were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption and desorption, Fourier transform infrared spectroscopy, thermogravimetry analysis, differential scanning calorimetry, hydrogen nuclear magnetic resonance. Results showed that compared with PMMA from conventional RAFT polymerization, PMMAs obtained from internal SBA-15 featured with narrower molecule weight distribution (1.34–1.55) and higher thermal stability due to confinement effects. With the increment of pore size of SBA-15, the molecular weight and glass transition temperature (Tg) of PMMA obtained from internal SBA-15 were distinctly improved whereas isotacticity of the PMMA decreased. The properties of the PMMA were managed with controllable RAFT polymerization by regulation the pore size of SBA-15.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo, Characterization of the porous structure of SBA-15. Biomed. Res. Int. 7, 945–953 (2000)

  2. 2.

    S.M. Ng, S.I. Ogino, T. Aida, K.A. Koyano, T. Tatsumi, Free radical polymerization within mesoporous zeolite channels. Macromol. Rapid Commun. 12, 991–996 (1997)

  3. 3.

    Y. Liu, J. Qiu, Y. Jiang, Z. Liu, M. Meng, L. Ni, C. Qin, J. Peng, Selective Ce(III) ion-imprinted polymer grafted on Fe3O4 nanoparticles supported by SBA-15 mesopores microreactor via surface-initiated RAFT polymerization. Microporous Mesoporous Mater. 234, 176–185 (2016)

  4. 4.

    H. Blas, M. Save, C. Boissiere, C. Sanchez, B. Charleux, Surface-initiated nitroxide-mediated polymerization from ordered mesoporous silica. Macromolecules 8, 2577–2588 (2011)

  5. 5.

    M.S. Chen, L.M. Qin, Y.L. Liu, F.A. Zhang, Controllable preparation of polymer brushes from mesoporous silica SBA-15 via surface-initiated ARGET ATRP. Microporous Mesoporous Mater. 263, 158–164 (2018)

  6. 6.

    M.S. Chen, L.M. Qin, Y. Wei, Y.L. Liu, F.A. Zhang, Confinement effect of mesoporous silicas on bulk ARGET ATRP of styrene. J. Porous Mater. 26, 7–17 (2019)

  7. 7.

    F.A. Zhang, M. Luo, Z.J. Chen, Z.B. Wei, T.J. Pinnavaia, Effects of mesoporous silica particles on the emulsion polymerization of methyl methacrylate. Polym. Eng. Sci. 12, 2746–2752 (2015)

  8. 8.

    M. Choi, F. Kleitz, D. Liu, H.Y. Lee, W.S. Ahn, R. Ryoo, Controlled polymerization in mesoporous silica toward the design of organic–inorganic composite nanoporous materials. J. Am. Chem. Soc. 6, 1924–1932 (2015)

  9. 9.

    J. Chiefari, Y.K. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P.T. Le, R.T.A. Mayadunne, G.F. Meijs, C.L. Moad, G. Moad, Living free-radical polymerization by reversible addition–fragmentation chain transfer: the RAFT process. Macromolecules 16, 5559–5562 (1999)

  10. 10.

    M.F. Cunningham, Living/controlled radical polymerizations in dispersed phase systems. Prog. Polym. Sci. 6, 1039–1067 (2002)

  11. 11.

    G. Moad, E. Rizzardo, S.H. Thang, Radical addition–fragmentation chemistry in polymer synthesis. Polymer 5, 1079–1131 (2008)

  12. 12.

    T. Uemura, Y. Ono, A.K. Kitagawa, S. Kitagawa, Radical polymerization of vinyl monomers in porous coordination polymers: nanochannel size effects on reactivity, molecular weight, and stereostructure. Macromolecules 1, 87–94 (2008)

  13. 13.

    T. Uemura, R. Nakanishi, S. Mochizuki, Y. Murata, S. Kitagawa, Radical polymerization of 2,3-dimethyl-1,3-butadiene in coordination nanochannels. Chem. Commun. 48, 9892–9895 (2015)

  14. 14.

    M. Chen, H. Zhou, L. Zhou, F. Zhang, Confined polymerization: ARGET ATRP of MMA in the nanopores of modified SBA-15. Polymer 114, 180–188 (2017)

  15. 15.

    C.Y. Hong, X. Li, C.Y. Pan, Smart core–shell nanostructure with a mesoporous core and a stimuli-responsive nanoshell synthesized via surface reversible addition–fragmentation chain transfer polymerization. J. Phys. Chem. C 39, 15320–15324 (2008)

  16. 16.

    F. Chen, X. Jiang, T. Kuang, L. Chang, D. Fu, J. Yang, P. Fan, M. Zhong, Polyelectrolyte/mesoporous silica hybrid materials for the high performance multiple-detection of pH value and temperature. Polym. Chem. 18, 3529–3536 (2015)

  17. 17.

    T. Sano, H. Hagimoto, J.Z. Jin, Y. Oumi, T. Uozumi, K. Soga, Influences of methylaluminoxane separated by porous inorganic materials on the isospecific polymerization of propylene. Macromol. Rapid Commun. 17, 1191–1195 (2000)

  18. 18.

    B. Paredes, R.V. Grieken, A. Carrero, I. Suarez, J.B.P. Soares, Ethylene/1-hexene copolymers produced with MAO/(nBuCp)2ZrCl2 supported on SBA-15 materials with different pore sizes. Macromol. Chem. Phys. 15, 1590–1599 (2011)

  19. 19.

    M. Tarnacka, A. Dzienia, P. Maksym, A. Talik, A. Zieba, R. Bielas, K. Kaminski, M. Paluch, Highly efficient ROP polymerization of ε-caprolactone catalyzed by nanoporous alumina membranes. How the confinement affects the progress and product of ROP reaction. Macromolecules 12, 4588–4597 (2018)

  20. 20.

    Y. Wei, R. Guo, M. Chen, F. Zhang, RAFT polymerization of PMMA-b-PS with ethyl xanthate ethyl propionate as chain transfer agent. Polym. Mater. Sci. Eng. 33, 8–12 (2017)

  21. 21.

    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 5350, 548–552 (1998)

  22. 22.

    M. Kang, S.H. Yi, H.I. Lee, J.E. Yie, J.M. Kim, Reversible replication between ordered mesoporous silica and mesoporous carbon. Chem. Commun. 17, 1944–1945 (2002)

  23. 23.

    C. Yu, J. Fan, B. Tian, D. Zhao, G.D. Stucky, High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv. Mater. 23, 1742–1745 (2010)

  24. 24.

    C. Serre, A. Auroux, A. Gervasini, M. Hervieu, G. Ferey, Hexagonal and cubic thermally stable mesoporous tin(IV) phosphates with acidic and catalytic properties. Stud. Surf. Sci. Catal. 9, 1091–1099 (2002)

  25. 25.

    K. Kageyama, J.I. Tamazawa, T. Aida, Extrusion polymerization: catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science 5436, 2113–2115 (1999)

  26. 26.

    Z.B. Wei, R. Bai, F.A. Zhang, L. Zhou, C.L. Yu, Effects of SBA-15 and its content on MMA solution polymerization and PMMA composites. Iran. Polym. J. 8, 571–578 (2013)

  27. 27.

    H.C. Lee, J. Hwang, U. Schilde, M. Antonietti, K. Matyjaszewski, B.V.K.J. Schmidt, Toward ultimate control of radical polymerization: functionalized metal-organic frameworks as a robust environment for metal-catalyzed polymerizations. Chem. Mater. 9(30), 2983–2994 (2018)

  28. 28.

    J. Hwang, H.C. Lee, M. Antonietti, B.V.K.J. Schmidt, Free radical and RAFT polymerization of vinyl esters in metal-organic-frameworks. Polym. Chem. 40(8), 6204–6208 (2017)

  29. 29.

    H. Zhao, S.L. Simon, Methyl methacrylate polymerization in nanoporous confinement. Polymer 18(52), 4093–4098 (2011)

  30. 30.

    Maksym PE, Tarnacka M, Wolnica K, Dzienia A, Erfurt K, Chrobok A, Zięba A, Bielas R, Kaminski K, Paluch M (2017) Studies on the hard confinement effect on the RAFT polymerization of the monomeric ionic liquid. Unexpected triggering RAFT polymerization at 30 °C. Polym. Chem. 43(9):335–345

  31. 31.

    S. Alexandris, G. Sakellariou, M. Steinhart, G. Floudas, Dynamics of unentangled cis-1,4-polyisoprene confined to nanoporous alumina. Macromolecules 12(47), 3895–3900 (2014)

Download references

Acknowledgements

The authors greatly acknowledgement the financial support from the National Natural Science Foundation of China (No. 21664005), National Natural Science Foundation of Guangxi (No. 2018GXNSFBA281121) and Guangxi Program for Hundred Talents for Returned Scholars.

Author information

Correspondence to Caili Yu or Faai Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zeng, Y., Yu, C. et al. Controlled RAFT polymerization of MMA in confined space of various pore sizes of SBA-15. J Porous Mater 27, 95–105 (2020). https://doi.org/10.1007/s10934-019-00797-9

Download citation

Keywords

  • RAFT polymerization
  • SBA-15
  • Confinement space
  • Pore size
  • MMA