Porous and efficient polymeric solid acid synthesized from sulfonation of nanoporous polymer

  • Yijun Du
  • Guohua LiEmail author


Efficient nanoporous amberlite (XAD-4) based solid strong acid (XAD-4–SO3H–SO2CF3) has been successfully synthesized by decorating SO2CF3, a strong electron withdrawing group onto the network of nanoporous solid acid of XAD-4–SO3H. N2 sorption isotherms and TG curves show that XAD-4–SO3H–SO2CF3 has large BET surface area and good thermal stability. XPS spectra show that the group of SO2CF3 has been introduced onto the network of XAD-4–SO3H. TEM results shows that the well-dispersion of C, S, and O elements. Catalytic property tests show that XAD-4–SO3H–SO2CF3 exhibits excellent catalytic activities in biomass transformation toward acylation of anisole with acetyl chloride, synthesis of bisphenol-A and esterification of acetic acid with cyclohexanol when compared with those of solid strong acids of Amberlyst-15, SBA-15-0.1–SO3H, H3PW12O40 and XAD-4–SO3H.


Polymeric solid acid Sulfonation Nanoporous polymer Porous amberlite Acylation reactions 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10934_2019_788_MOESM1_ESM.docx (1002 kb)
Supplementary material 1 (DOCX 1001 kb)


  1. 1.
    F.J. Liu, T. Willhammar, L. Wang, L. Zhu, Q. Sun, X. Meng, W. Carrillo-Cabrera, X. Zou, F.S. Xiao, ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules. J. Am. Chem. Soc. 134, 4557–4560 (2012)CrossRefPubMedGoogle Scholar
  2. 2.
    A.A. Kiss, C.D. Alexandre, R. Gadi, Solid acid catalysts for biodiesel production-towards sustainable energy. Adv. Synth. Catal. 348, 75–81 (2006)CrossRefGoogle Scholar
  3. 3.
    A. Onda, O. Takafumi, Y. Kazumichi, Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem. 10, 1033–1037 (2008)CrossRefGoogle Scholar
  4. 4.
    R. Weingarten, G.A. Tompsett, W.C. Conner Jr., G.W. Huber, Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: the role of Lewis and Brønsted acid sites. J. Catal. 279, 174–182 (2011)CrossRefGoogle Scholar
  5. 5.
    E.I. Gürbüz, J.M.R. Gallo, D.M. Alonso, S.G. Wettstein, W.Y. Lim, J.A. Dumesic, Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone. Angew. Chem. Int. Ed. 52, 1270–1274 (2013)CrossRefGoogle Scholar
  6. 6.
    D.R. Fernandes, A.S. Rocha, E.F. Mai, C.J. Mota, V.T. Da Silva, Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl. Catal. A 425, 199–204 (2012)CrossRefGoogle Scholar
  7. 7.
    Y.C. Sharma, B. Singh, J. Korstad, Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels Bioprod. Biorefin. 5, 69–92 (2011)CrossRefGoogle Scholar
  8. 8.
    J.R. Kastner, J. Miller, D.P. Geller, J. Locklin, L.H. Keith, T. Johnson, Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal. Today 190(1), 122–132 (2012)CrossRefGoogle Scholar
  9. 9.
    K.S. Arias, A. Garcia-Ortiz, M.J. Climent, A. Corma, S. Iborra, Mutual valorization of 5-hydroxymethylfurfural and glycerol into valuable diol monomers with solid acid catalysts. ACS Sustain. Chem. Eng. 6, 4239–4245 (2018)CrossRefGoogle Scholar
  10. 10.
    H.L. Cai, C.Z. Li, A.Q. Wang, G.L. Xu, T. Zhang, Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Appl. Catal. B 123–124, 333–338 (2012)CrossRefGoogle Scholar
  11. 11.
    F.J. Liu, A. Zheng, I. Noshadi, F.-S. Xiao, Design and synthesis of hydrophobic and stable mesoporous polymeric solid acid with ultra strong acid strength and excellent catalytic activities for biomass transformation. Appl. Catal. B 136, 193–201 (2013)CrossRefGoogle Scholar
  12. 12.
    G.A. Olah, G.K.S. Prakash, J. Sommer, Superacid-catalyzed condensation of benzaldehyde with benzene: study of protonated benzaldehydes and the role of superelectrophilic activation. Science 206, 13–16 (1979)CrossRefPubMedGoogle Scholar
  13. 13.
    J. Gardy, A. Osatiashtiani, O. Céspedes, A. Hassanpour, X. Lai, A.F. Lee, M. Rehan, A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Appl. Catal. B 234, 268–278 (2018)CrossRefGoogle Scholar
  14. 14.
    W. Srisang, F. Pouryousefi, P.A. Osei, B. Decardi-Nelson, A. Akachuku, P. Tontiwachwuthikul, R. Idem, CO2 capture efficiency and heat duty of solid acid catalyst-aided CO2 desorption using blends of primary-tertiary amines. Int. J. Greenh. Gas Control 69, 52–59 (2018)CrossRefGoogle Scholar
  15. 15.
    R. Navarro, I. Saucedo, C. Gonzalez, E. Guibal, Amberlite XAD-7 impregnated with Cyphos IL-101 (tetraalkylphosphonium ionic liquid) for Pd(II) recovery from HCl solutions. Chem. Eng. J. 185, 226–235 (2012)CrossRefGoogle Scholar
  16. 16.
    A. Arias, I. Saucedo, R. Navarro, V. Gallardo, M. Martinez, E. Guibal, Cadmium(II) recovery from hydrochloric acid solutions using amberlite XAD-7 impregnated with a tetraalkyl phosphonium ionic liquid. React. Funct. Polym. 71(11), 1059–1070 (2011)CrossRefGoogle Scholar
  17. 17.
    P. Cyganowski, D. Jermakowicz-Bartkowiak, J. Chęcmanowski, M. Kujawska, M. Bryjak, New core-shell type polymeric supports based on the amberlite XAD-4 adsorbent: a novel synthesis procedure. Chin. J. Chem. Phys. 33(5), 594–600 (2015)CrossRefGoogle Scholar
  18. 18.
    P. Kalita, B. Sathyaseelan, A. Mano, S.M. Javaid Zaidi, M.A. Chari, A. Vinu, Synthesis of superacid-functionalized mesoporous nanocages with tunable pore diameters and their application in the synthesis of coumarins. Chemistry 16, 2843–2851 (2010)CrossRefPubMedGoogle Scholar
  19. 19.
    I. Noshadi, B. Kanjilal, S.C. Du, G.M. Bollas, S.L. Suib, A. Provatas, F.J. Liu, R.S. Parnas, Catalyzed production of biodiesel and bio-chemicals from brown grease using ionic liquid functionalized ordered mesoporous polymer. Appl. Energy 129, 112–122 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Rahmati, A. Ghaemi, M. Samadfam, Kinetic and thermodynamic studies of uranium(VI) adsorption using amberlite IRA-910 resin. Ann. Nucl. Energy 39(1), 42–48 (2012)CrossRefGoogle Scholar
  21. 21.
    O. Saidi, J. Marafie, A.E. Ledger, P.M. Liu, M.F. Mahon, G. Kociok-Köhn, C.G. Frost, Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines. J. Am. Chem. Soc. 133(48), 19298–19301 (2011)CrossRefPubMedGoogle Scholar
  22. 22.
    F.J. Liu, K. Huang, A. Zheng, F.-S. Xiao, S. Dai, Hydrophobic solid acids and their catalytic applications in green and sustainable chemistry. ACS Catal. 8, 372–391 (2018)CrossRefGoogle Scholar
  23. 23.
    Q. Wu, F.J. Liu, X. Yi, Y. Zou, L.L. Jiang, Solvent-free, one-step to the synthesis of sulfonic group functionalized mesoporous organosilica with ultra-high acid concentrations and excellent catalytic activities. Green Chem. 20, 1020–1030 (2018)CrossRefGoogle Scholar
  24. 24.
    M.O. James, W. Li, D.P. Summerlot, L. Rowland-Faux, C.E. Wood, Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta. Environ. Int. 36(8), 942–949 (2010)CrossRefPubMedGoogle Scholar
  25. 25.
    K. Cho, S.M. Lee, H.J. Kim, Y.J. Ko, S.U. Son, Nanoparticulate and microporous solid acid catalysts bearing aliphatic sulfonic acids for biomass conversion. Chem. Commun. 55, 3697–3700 (2019)CrossRefGoogle Scholar
  26. 26.
    F.J. Liu, W. Kong, L. Wang, X. Yi, I. Noshadi, A. Zheng, C. Qi, Efficient biomass transformations catalyzed by graphene-like nanoporous carbons functionalized with strong acid ionic liquids and sulfonic groups. Green Chem. 17, 480–489 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Macht, R.T. Carr, E. Iglesia, Functional assessment of the strength of solid acid catalysts. J. Catal. 264, 54–66 (2009)CrossRefGoogle Scholar
  28. 28.
    C.E. Tsai, C.W. Lin, B.J. Hwang, A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation. J. Power Sources 195(8), 2166–2173 (2010)CrossRefGoogle Scholar
  29. 29.
    S. Das, P. Kumar, K. Dutta, P.P. Kundu, Partial sulfonation of PVdF-co-HFP: a preliminary study and characterization for application in direct methanol fuel cell. Appl. Energy 113, 169–177 (2014)CrossRefGoogle Scholar
  30. 30.
    P. Knauth, H. Hou, E. Bloch, E. Sgreccia, M.L. Di Vona, Thermogravimetric analysis of SPEEK membranes: thermal stability, degree of sulfonation and cross-linking reaction. J. Anal. Appl. Pyrol. 92, 361–365 (2011)CrossRefGoogle Scholar
  31. 31.
    M. Blangetti, H. Rosso, C. Prandi, A. Deagostino, P. Venturello, Suzuki-Miyaura cross-coupling in acylation reactions scope and recent developments. Molecules 18, 1188–1213 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    P. Cotanda, A. Lu, J.P. Patterson, N. Petzetakis, R.K. O’Reilly, Functionalized organocatalytic nanoreactors: hydrophobic pockets for acylation reactions in water. Macromolecules 45, 2377–2384 (2012)CrossRefGoogle Scholar
  33. 33.
    Y. Du, S. Liu, Y. Zhan, C. Yin, Y. Di, F. Xiao, Mesostructured sulfated tin oxide and its high catalytic activity in esterification and friedel-crafts acylation. Catal. Lett. 108, 155–158 (2006)CrossRefGoogle Scholar
  34. 34.
    F.J. Liu, J. Sun, L. Zhu, X. Meng, C. Qi, F.-S. Xiao, Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. J. Mater. Chem. 22, 5495–5502 (2012)CrossRefGoogle Scholar
  35. 35.
    L.N. Guo, H. Wang, X.H. Duan, ChemInform abstract: recent advances in catalytic decarboxylative acylation reactions via a radical process. Org. Biomol. Chem. 14, 7380–7391 (2016)CrossRefPubMedGoogle Scholar
  36. 36.
    W. Zhou, H. Li, L. Wang, Direct carbo-acylation reactions of 2–arylpyridines with r–diketones via Pd-catalyzed CH activation and selective C(sp2)-C(sp2) cleavage. Org. Lett. 14, 4594–4597 (2012)CrossRefPubMedGoogle Scholar
  37. 37.
    M. Balaraju, P. Nikhitha, K. Jagadeeswaraiah, K. Srilatha, P.S. Prasad, N. Lingaiah, Acetylation of glycerol to synthesize bioadditives over niobic acid supported tungstophosphoric acid catalysts. Fuel Process. Technol. 91(2), 249–253 (2010)CrossRefGoogle Scholar
  38. 38.
    S.K. Abd El Rahman, H.M. Hassan, M.S. El–Shall, Acid catalyzed organic transformations by heteropoly tungstophosphoric acid supported on MCM-41. Appl. Catal. A 411, 77–86 (2012)Google Scholar
  39. 39.
    M. Koehle, Z. Zhang, K.A. Goulas, S. Caratzoulas, D.G. Vlachos, R.F. Lobo, Acylation of methylfuran with Brønsted and Lewis acid zeolites. Appl. Catal. A 564, 90–101 (2018)CrossRefGoogle Scholar
  40. 40.
    F.J. Liu, Q. Wu, C. Liu, C. Qi, K. Huang, D.-J. Tao, S. Dai, Ordered mesoporous polymers for biomass conversions and cross-coupling reactions. Chemsuschem 9, 2496–2504 (2016)CrossRefPubMedGoogle Scholar
  41. 41.
    F.J. Liu, B. Li, C. Liu, W. Kong, X. Yi, A. Zheng, C. Qi, Template-free synthesis of porous carbonaceous solid acids with controllable acid sites and their excellent activity for catalyzing the synthesis of biofuels and fine chemicals. Catal. Sci. Technol. 6, 2995–3007 (2016)CrossRefGoogle Scholar
  42. 42.
    P. Barbaro, F. Liguori, Ion exchange resins: catalyst recovery and recycle. Chem. Rev. 109, 515–529 (2009)CrossRefPubMedGoogle Scholar
  43. 43.
    F.J. Liu, S. Zuo, W. Kong, C. Qi, High-temperature synthesis of strong acidic ionic liquids functionalized, ordered and stable mesoporous polymers with excellent catalytic activities. Green Chem. 14, 1342–1349 (2012)CrossRefGoogle Scholar
  44. 44.
    K. Mokoena, M.S. Scurrell, Alkyl transfer reactions on solid acids. The disproportionation of ethylbenzene and toluene on H-mordenite and HY zeolites. Pet. Sci. Technol. 36(16), 1208–1215 (2018)CrossRefGoogle Scholar
  45. 45.
    E.C. de Souza, M. Romero-Ortega, H.F. Olivo, Lipase-mediated selective acetylation of primary alcohols in ethyl acetate. Tetrahedron Lett. 59(3), 287–290 (2018)CrossRefGoogle Scholar
  46. 46.
    A.A. Kiss, A.C. Dimian, G. Rothenberg, Solid acid catalysts for biodiesel production—towards sustainable energy. Adv. Synth. Catal. 348(1–2), 75–81 (2006)CrossRefGoogle Scholar
  47. 47.
    A. Onda, T. Ochi, K. Yanagisawa, Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem. 10(10), 1033–1037 (2008)CrossRefGoogle Scholar
  48. 48.
    X. Song, A. Sayari, Sulfated zirconia-based strong solid-acid catalysts: recent progress. Catal. Rev. 38(3), 329–412 (1996)CrossRefGoogle Scholar
  49. 49.
    I. Takahara, M. Saito, M. Inaba, K. Murata, Dehydration of ethanol into ethylene over solid acid catalysts. Catal. Lett. 105(3–4), 249–252 (2005)CrossRefGoogle Scholar
  50. 50.
    I. Jiménez-Morales, J. Santamaría-González, P. Maireles-Torres, A. Jiménez-López, Calcined zirconium sulfate supported on MCM-41 silica as acid catalyst for ethanolysis of sunflower oil. Appl. Catal. B 105, 199–205 (2011)CrossRefGoogle Scholar
  51. 51.
    F.J. Liu, K. Huang, C.-J. Yoo, C. Okonkwo, D.-J. Tao, C.W. Jones, S. Dai, Facilely synthesized meso-macroporous polymer as support of poly(ethyleneimine) for highly efficient and selective capture of CO2. Chem. Eng. J. 314, 466–476 (2017)CrossRefGoogle Scholar
  52. 52.
    F.J. Liu, K. Huang, Q. Wu, S. Dai, Solvent-free self-assembly to the synthesis of nitrogen-doped ordered mesoporous polymers for highly selective capture and conversion of CO2. Adv. Mater. 29, 1700445 (2017)CrossRefGoogle Scholar
  53. 53.
    Q. Wu, K. Huang, F.J. Liu, P. Zhang, L.L. Jiang, Pyridine-functionalized and metallized meso-macroporous polymers for highly selective capture and catalytic conversion of CO2 into cyclic carbonates. Ind. Eng. Chem. Res. 56, 15008–15016 (2017)CrossRefGoogle Scholar
  54. 54.
    W.Y. Lou, M.H. Zong, Z.Q. Duan, Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour. Technol. 99(18), 8752–8758 (2008)CrossRefPubMedGoogle Scholar
  55. 55.
    K.I. Shimizu, R. Uozumi, A. Satsuma, Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catal. Commun. 10(14), 1849–1853 (2009)CrossRefGoogle Scholar
  56. 56.
    R. Weingarten, G.A. Tompsett, W.C. Conner Jr., G.W. Huber, Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: the role of Lewis and Brønsted acid sites. J. Catal. 279(1), 174–182 (2011)CrossRefGoogle Scholar
  57. 57.
    E.I. Gürbüz, J.M.R. Gallo, D.M. Alonso, S.G. Wettstein, W.Y. Lim, J.A. Dumesic, Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone. Angew. Chem. Int. Ed. 52(4), 1270–1274 (2013)CrossRefGoogle Scholar
  58. 58.
    F.J. Liu, K. Huang, S.M. Ding, S. Dai, One-step synthesis of nitrogen-doped graphene-like meso-macroporous carbons as highly efficient and selective absorbents for CO2 capture. J. Mater. Chem. A 4, 14567–14571 (2016)CrossRefGoogle Scholar
  59. 59.
    P.S. Sreeprasanth, R. Srivastava, D. Srinivas, P. Ratnasamy, Hydrophobic, solid acid catalysts for production of biofuels and lubricants. Appl. Catal. A 314(2), 148–159 (2006)CrossRefGoogle Scholar
  60. 60.
    J.P. Lange, W.D. van de Graaf, R.J. Haan, Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts. Chemsuschem 2(5), 437–441 (2009)CrossRefPubMedGoogle Scholar
  61. 61.
    Y. Sakata, M.A. Uddin, A. Muto, Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. J. Anal. Appl. Pyrol. 51(1–2), 135–155 (1999)CrossRefGoogle Scholar
  62. 62.
    K. Huang, F.J. Liu, S. Dai, Solvothermal synthesis of hierarchically nanoporous organic polymers with tunable nitrogen functionality for highly selective capture of CO2. J. Mater. Chem. A 4, 13063–13070 (2016)CrossRefGoogle Scholar
  63. 63.
    F.J. Liu, C. Liu, W. Kong, C. Qi, A. Zheng, S. Dai, Design and synthesis of micro–meso–macroporous polymers with versatile active sites and excellent activities in the production of biofuels and fine chemicals. Green Chem. 18, 6536–6544 (2016)CrossRefGoogle Scholar
  64. 64.
    F. Su, Y.H. Guo, Advancements in solid acid catalysts for biodiesel production. Green Chem. 16(6), 2934–2957 (2014)CrossRefGoogle Scholar
  65. 65.
    R. Xing, N. Liu, Y. Liu, H. Wu, Y. Jiang, L. Chen, P. Wu, Novel solid acid catalysts: sulfonic acid group-functionalized mesostructured polymers. Adv. Funct. Mater. 17(14), 2455–2461 (2007)CrossRefGoogle Scholar
  66. 66.
    D.R. Fernandes, A.S. Rocha, E.F. Mai, C.J. Mota, V.T. Da Silva, Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl. Catal. A 425, 199–204 (2012)CrossRefGoogle Scholar
  67. 67.
    B. He, F.J. Liu, S.K. Yan, Temperature-directed growth of highly pyridinic nitrogen doped, graphitized, ultra-hollow carbon frameworks as an efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 5, 18064–18070 (2017)CrossRefGoogle Scholar
  68. 68.
    F.J. Liu, C.J. Li, L. Ren, X.J. Meng, F.-S. Xiao, High-temperature synthesis of stable and ordered mesoporous polymer monoliths with low dielectric constants. J. Mater. Chem. 19, 7921–7928 (2009)CrossRefGoogle Scholar
  69. 69.
    K. Jacobson, R. Gopinath, L.C. Meher, A.K. Dalai, Solid acid catalyzed biodiesel production from waste cooking oil. Appl. Catal. B 85(1–2), 86–91 (2008)CrossRefGoogle Scholar
  70. 70.
    S.H. Chai, H.P. Wang, Y. Liang, B.Q. Xu, Sustainable production of acrolein: Investigation of solid acid–base catalysts for gas-phase dehydration of glycerol. Green Chem. 9(10), 1130–1136 (2007)CrossRefGoogle Scholar
  71. 71.
    M.A. Harmer, Q. Sun, A.J. Vega, W.E. Farneth, A. Heidekum, W.F. Hoelderich, Nafion resin–silica nanocomposite solid acid catalysts. Microstructure–processing–property correlations. Green Chem. 2(1), 7–14 (2000)CrossRefGoogle Scholar
  72. 72.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998)CrossRefPubMedGoogle Scholar
  73. 73.
    F.J. Liu, X. Meng, Y. Zhang, L. Ren, F. Nawaz, F. Xiao, Efficient and stable solid acid catalysts synthesized from sulfonation of swelling mesoporous polydivinylbenzenes. J. Catal. 271, 52–58 (2010)CrossRefGoogle Scholar
  74. 74.
    F.J. Liu, W. Kong, C. Qi, L. Zhu, F. Xiao, Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity. ACS Catal. 2, 565–572 (2012)CrossRefGoogle Scholar
  75. 75.
    F.J. Liu, L. Wang, Q. Sun, L. Zhu, X. Meng, F. Xiao, Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts. J. Am. Chem. Soc. 134, 16948–16950 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    A. Zheng, S.J. Huang, S.B. Liu, F. Deng, Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules. Phys. Chem. Chem. Phys. 13(33), 14889–14901 (2011)CrossRefPubMedGoogle Scholar
  77. 77.
    M.G. Kulkarni, R. Gopinath, L.C. Meher, A.K. Dalai, Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem. 8(12), 1056–1062 (2006)CrossRefGoogle Scholar
  78. 78.
    A.J. Hoefnagel, E.A. Gunnewegh, R.S. Downing, H. van Bekkum, Synthesis of 7-hydroxycoumarins catalysed by solid acid catalysts. J. Chem. Soc. 2, 225–226 (1995)Google Scholar
  79. 79.
    B.M. Reddy, P.M. Sreekanth, V.R. Reddy, Modified zirconia solid acid catalysts for organic synthesis and transformations. J. Mol. Catal. A 225(1), 71–78 (2005)CrossRefGoogle Scholar
  80. 80.
    J.R. Kastner, J. Miller, D.P. Geller, J. Locklin, L.H. Keith, T. Johnson, Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal. Today 190(1), 122–132 (2012)CrossRefGoogle Scholar
  81. 81.
    F.J. Liu, G. Feng, M. Lin, C. Wang, B. Hu, C. Qi, Superoleophilic nanoporous polymeric ionic liquids loaded with palladium acetate: reactants enrichment and efficient heterogeneous catalysts for Suzuki-Miyaura coupling reaction. J. Colloid Interface Sci. 435, 83–90 (2014)CrossRefPubMedGoogle Scholar
  82. 82.
    K.S. Noveselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  83. 83.
    B.M. Choudary, M. Sateesh, M.L. Kantam, K.K. Rao, K.R. Prasad, K.V. Raghavan, J.A.R.P. Sarma, Selective nitration of aromatic compounds by solid acid catalysts. Chem. Commun. 1, 25–26 (2000)CrossRefGoogle Scholar
  84. 84.
    A.M. Alsalme, P.V. Wiper, Y.Z. Khimyak, E.F. Kozhevnikova, I.V. Kozhevnikov, Solid acid catalysts based on H3PW12O40 heteropoly acid: acid and catalytic properties at a gas–solid interface. J. Catal. 276(1), 181–189 (2010)CrossRefGoogle Scholar
  85. 85.
    C. Koibeck, M. Killian, F. Maier, N. Paape, P. Wasserscheid, H.-P. Steinrück, Surface characterization of functionalized imidazolium-based ionic liquids. Langmuir 24, 9500–9507 (2008)CrossRefGoogle Scholar
  86. 86.
    F.J. Liu, R.K. Kamat, I. Noshadi, D. Peck, R.S. Parnas, A. Zheng, C. Qi, Y. Lin, Depolymerization of crystalline cellulose catalyzed by acidic ionic liquids grafted onto sponge-like nanoporous polymers. Chem. Commun. 49, 8456–8458 (2013)CrossRefGoogle Scholar
  87. 87.
    L. Fan, I. Nakamura, S. Ishida, K. Fujimoto, Supercritical-phase alkylation reaction on solid acid catalysts: mechanistic study and catalyst development. Ind. Eng. Chem. Res. 36(5), 1458–1463 (1997)CrossRefGoogle Scholar
  88. 88.
    A.K. Deepa, P.L. Dhepe, Lignin depolymerization into aromatic monomers over solid acid catalysts. ACS Catal. 5(1), 365–379 (2014)CrossRefGoogle Scholar
  89. 89.
    B. Das, K. Damodar, N. Chowdhury, R.A. Kumar, Application of heterogeneous solid acid catalysts for Friedlander synthesis of quinolines. J. Mol. Catal. A 274(1–2), 148–152 (2007)CrossRefGoogle Scholar
  90. 90.
    F. Liu, W. Li, Q. Sun, L. Zhu, X. Meng, Y. Guo, F.-S. Xiao, Transesterification to biodiesel with superhydrophobic porous solid base. Catalysts ChemSusChem 4, 1059–1062 (2011)CrossRefPubMedGoogle Scholar
  91. 91.
    A. Corma, M.E. Domine, S. Valencia, Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. J. Catal. 215(2), 294–304 (2003)CrossRefGoogle Scholar
  92. 92.
    K.N. Rao, A. Sridhar, A.F. Lee, S.J. Tavener, N.A. Young, K. Wilson, Zirconium phosphate supported tungsten oxide solid acid catalysts for the esterification of palmitic acid. Green Chem. 8(9), 790–797 (2006)CrossRefGoogle Scholar
  93. 93.
    B.M. Reddy, P.M. Sreekanth, Y. Yamada, Q. Xu, T. Kobayashi, Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques. Appl. Catal. A 228(1–2), 269–278 (2002)CrossRefGoogle Scholar
  94. 94.
    T. Takeguchi, K.I. Yanagisawa, T. Inui, M. Inoue, Effect of the property of solid acid upon syngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu–Zn–Ga and solid acids. Appl. Catal. A 192(2), 201–209 (2000)CrossRefGoogle Scholar
  95. 95.
    X. Kan, X. Chen, W. Chen, J. Mi, J.-Y. Zhang, F.J. Liu, A. Zheng, K. Huang, L. Shen, C. Au, L.L. Jiang, Nitrogen-decorated, ordered mesoporous carbon spheres as high-efficient catalysts for selective capture and oxidation of H2S. ACS Sustain. Chem. Eng. 7, 7609–7618 (2019)CrossRefGoogle Scholar
  96. 96.
    I. Noshadi, B. Kanjilal, F.J. Liu, Porous carbonaceous solid acids derived from farm animal waste and their use in catalyzing biomass transformation. Appl. Catal. A 513, 19–29 (2016)CrossRefGoogle Scholar
  97. 97.
    Y. Román-Leshkov, M. Moliner, J.A. Labinger, M.E. Davis, Mechanism of glucose isomerization using a solid lewis acid catalyst in water. Angew. Chem. Int. Ed. 49(47), 8954–8957 (2010)CrossRefGoogle Scholar
  98. 98.
    F.J. Liu, J. Sun, Q. Sun, L. Zhu, L. Wang, X. Meng, C. Qi, F.-S. Xiao, High-temperature synthesis of magnetically active and SO3H-functionalized ordered mesoporous carbon with good catalytic performance. Catal. Today 186, 115–120 (2012)CrossRefGoogle Scholar
  99. 99.
    K. Hauge, E. Bergene, D. Chen, G.R. Fredriksen, A. Holmen, Oligomerization of isobutene over solid acid catalysts. Catal. Today 100(3–4), 463–466 (2005)CrossRefGoogle Scholar
  100. 100.
    F.J. Liu, X. Yi, W. Chen, Z.Q. Liu, W. Chen, C.-Z. Qi, Y.-F. Song, A. Zheng, Develop two-dimensional, highly mass-transferred solid superacids with extremely-high acid strength and superior catalytic performance. Chem. Sci. 10, 5875–5883 (2019)CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    A. Takagaki, M. Ohara, S. Nishimura, K. Ebitani, A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chem. Commun. 41, 6276–6278 (2009)CrossRefGoogle Scholar
  102. 102.
    F.J. Liu, S. Zuo, C. Wang, F.-S. Xiao, C.Z. Qi, Pd/transition metal oxides functionalized ZSM-5 single crystals with b-axis aligned mesopores: efficient and long-lived catalysts for benzene combustion. Appl. Catal. B 148–149, 106–113 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringZhejiang University of TechnologyHangzhouPeople’s Republic of China
  2. 2.Yuanpei CollegeShaoxing UniversityShaoxingPeople’s Republic of China

Personalised recommendations