Journal of Porous Materials

, Volume 26, Issue 6, pp 1821–1830 | Cite as

Microtubular carbon fibers derived from bamboo and wood as sustainable anodes for lithium and sodium ion batteries

  • Xiang ZhangEmail author
  • Jingbo Hu
  • Xiaoyi Chen
  • Mei Zhang
  • Qinyuan Huang
  • Xiaoqing Du
  • Yuan Liu
  • Xianjun LiEmail author


Herein, a brief and scalable strategy to convert bamboo and woods into uniform hollow cellulose fibers with micrometer-size through a simple delignification process in nitric acid solutions is presented. Next, these cellulose fibers are further transformed into individual microtubular carbon fibers by a carbonization treatment. The evolved carbon fibers show an amorphous organization, large interlayer distances (0.39–0.40 nm) and narrow pore size distributions (0–10 nm), consequently exhibit superior electrochemical performance (vs. Li/Li+) in comparison with practical graphite anode. A high reversible capacity of 435 mA h g−1 at 50 mA g−1, as well as competitive rate capacity (up to 150 mA h g−1 at 2 A g−1) and stability over long-term cycling (76% capacity retention at 500 mA g−1 after 500 cycles) is achieved. Furthermore, a majority of reversible capacity was delivered by these carbon fibers at an obvious low discharging-charging potential plateau (0–0.1 V) as lithium ion battery anodes. When the carbon fibers derived from bamboo and paulownia are tested vs. Na/Na+, reversible capacities of 320 and 302 mA h g−1 at 50 mA g−1 are delivered, respectively.


Biomass Carbon fiber Sustainable anode Lithium ion battery Sodium ion battery 



This research was supported by the National Key Research and Development Program of China (2017YFD0600202), Scientific Research Foundation of Central South University of Forestry and Technology (104-0452, 2018YC003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10934_2019_781_MOESM1_ESM.docx (836 kb)
Supplementary material 1 (DOCX 836 kb)


  1. 1.
    X. Zhang, S.C. Han, P.G. Xiao, C.L. Fan, W.H. Zhang, Carbon 100, 600 (2016)CrossRefGoogle Scholar
  2. 2.
    L. Wang, Q. Zhang, J. Zhu, X. Duan, Z. Xu, Y. Liu, H. Yang, B. Lu, Energy Storage Mater. 16, 37 (2019)CrossRefGoogle Scholar
  3. 3.
    C.F. Shi, K.X. Xiang, Y.R. Zhu, X.H. Chen, W. Zhou, H. Chen, Electrochim. Acta 246, 1088 (2017)CrossRefGoogle Scholar
  4. 4.
    K. Chen, H. Yang, F. Liang, D. Xue, A.C.S. Appl, Mat. Interfaces 10, 909 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Billaud, F. Bouville, T. Magrini, C. Villevieille, A.R. Studart, Nat. Energy 1, 16097 (2016)CrossRefGoogle Scholar
  6. 6.
    H.S. Hou, X.Q. Qiu, W.F. Wei, Y. Zhang, X.B. Ji, Adv. Energy Mater. 7, 1602898 (2017)CrossRefGoogle Scholar
  7. 7.
    T. Wu, M. Jing, L. Yang, G. Zou, H. Hou, Y. Zhang, Y. Zhang, X. Cao, X. Ji, Adv. Energy Mater. 9, 1803478 (2019)CrossRefGoogle Scholar
  8. 8.
    D.F. Xu, C.J. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y.H. Huang, L.N. Zhang, Adv. Energy Mater. 6, 1501929 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Wen, K. He, Y.J. Zhu, F.D. Han, Y.H. Xu, I. Matsuda, Y. Ishii, J. Cumings, C.S. Wang, Nat. Commun. 5, 4033 (2014)CrossRefGoogle Scholar
  10. 10.
    L.X. Zhang, Z.H. Liu, G.L. Cui, L.Q. Chen, Prog. Polym. Sci. 43, 136 (2015)CrossRefGoogle Scholar
  11. 11.
    D.W. Zhao, C.J. Chen, Q. Zhang, W.S. Chen, S.X. Liu, Q.W. Wang, Y.X. Liu, J. Li, H.P. Yu, Adv. Energy Mater. 7, 1700739 (2017)CrossRefGoogle Scholar
  12. 12.
    W. Luo, J. Hayden, S.H. Jang, Y.L. Wang, Y. Zhang, Y.D. Kuang, Y.B. Wang, Y.B. Zhou, G.W. Rubloff, C.F. Lin, L.B. Hu, Adv. Energy Mater. 8, 1702615 (2018)CrossRefGoogle Scholar
  13. 13.
    J. Deng, M.M. Li, Y. Wang, Green Chem. 18, 4824 (2016)CrossRefGoogle Scholar
  14. 14.
    W. Long, B. Fang, A. Ignaszak, Z. Wu, Y.-J. Wang, D. Wilkinson, Chem. Soc. Rev. 46, 7176 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Caballero, L. Hernan, J. Morales, Chemsuschem 4, 658 (2011)CrossRefGoogle Scholar
  16. 16.
    Z. Li, Z.W. Xu, X.H. Tan, H.L. Wang, C.M.B. Holt, T. Stephenson, B.C. Olsen, D. Mitlin, Energy Environ. Sci. 6, 871 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T.J. Stephenson, C.K. King’ondu, C.M. Holt, B.C. Olsen, J.K. Tak, D. Harfield, A.O. Anyia, D. Mitlin, ACS Nano 7, 5131 (2013)CrossRefGoogle Scholar
  18. 18.
    L.P. Wang, Z. Schnepp, M.M. Titirici, J. Mater. Chem. A 1, 5269 (2013)CrossRefGoogle Scholar
  19. 19.
    S.W. Han, D.W. Jung, J.H. Jeong, E.S. Oh, Chem. Eng. J. 254, 597 (2014)CrossRefGoogle Scholar
  20. 20.
    K.L. Hong, L. Qie, R. Zeng, Z.Q. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q.J. Fan, W.X. Zhang, Y.H. Huang, J. Mater. Chem. A 2, 12733 (2014)CrossRefGoogle Scholar
  21. 21.
    E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, ACS Nano 8, 7115 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Ding, H.L. Wang, Z. Li, K. Cui, D. Karpuzov, X.H. Tan, A. Kohandehghan, D. Mitlin, Energy Environ. Sci. 8, 941 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Hou, C. Cao, F. Idrees, X. Ma, ACS Nano 9, 2556 (2015)CrossRefGoogle Scholar
  24. 24.
    R.R. Gaddam, D.F. Yang, R. Narayan, K.V.S.N. Raju, N.A. Kumar, X.S. Zhao, Nano Energy 26, 346 (2016)CrossRefGoogle Scholar
  25. 25.
    Q. Jiang, Z.H. Zhang, S.Y. Yin, Z.P. Guo, S.Q. Wang, C.Q. Feng, Appl. Surf. Sci. 379, 73 (2016)CrossRefGoogle Scholar
  26. 26.
    K. Kim, R.A. Adams, P.J. Kim, A. Arora, E. Martinez, J.P. Youngblood, V.G. Pol, Carbon 133, 62 (2018)CrossRefGoogle Scholar
  27. 27.
    Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen, X. Huang, Adv. Energy Mater. 6, 1600659 (2016)CrossRefGoogle Scholar
  28. 28.
    X. Zhang, S.C. Han, C.L. Fan, L.F. Li, W.H. Zhang, J Solid State Electr 19, 715 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Jiang, J.H. Zhu, W. Ai, Z.X. Fan, X.N. Shen, C.J. Zou, J.P. Liu, H. Zhang, T. Yu, Energy Environ. Sci. 7, 2670 (2014)CrossRefGoogle Scholar
  30. 30.
    Z.L. Yu, S. Xin, Y. You, L. Yu, Y. Lin, D.W. Xu, C. Qiao, Z.H. Huang, N. Yang, S.H. Yu, J.B. Goodenough, J. Am. Chem. Soc. 138, 14915 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Zhang, C.L. Fan, P.A. Xiao, S.C. Han, Electrochim. Acta 222, 221 (2016)CrossRefGoogle Scholar
  32. 32.
    F. Béguin, F. Chevallier, C. Vix-Guterl, S. Saadallah, V. Bertagna, J.N. Rouzaud, E. Frackowiak, Carbon 43, 2160 (2005)CrossRefGoogle Scholar
  33. 33.
    K. Guerin, A. Fevrier-Bouvier, S. Flandrois, B. Simon, P. Biensan, Electrochim. Acta 45, 1607 (2000)CrossRefGoogle Scholar
  34. 34.
    T. Liu, L. Lin, X. Bi, L. Tian, K. Yang, J. Liu, M. Li, Z. Chen, J. Lu, K. Amine, K. Xu, F. Pan, Nat. Nanotechnol. 14, 50 (2019)CrossRefGoogle Scholar
  35. 35.
    L.F. Xiao, Y.L. Cao, W.A. Henderson, M.L. Sushko, Y.Y. Shao, J. Xiao, W. Wang, M.H. Engelhard, Z.M. Nie, J. Liu, Nano Energy 19, 279 (2016)CrossRefGoogle Scholar
  36. 36.
    B.A. Zhang, C.M. Ghimbeu, C. Laberty, C. Vix-Guterl, J.M. Tarascon, Adv. Energy Mater. 6, 1501588 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Science and EngineeringCentral South University of Forestry and TechnologyChangshaChina
  2. 2.School of Materials Science and Energy EngineeringFoshan UniversityFoshanChina

Personalised recommendations