Journal of Porous Materials

, Volume 26, Issue 6, pp 1851–1860 | Cite as

Tailoring porous carbon aerogels from bamboo cellulose fibers for high-performance supercapacitors

  • Xi YangEmail author
  • Xinge Liu
  • Min Cao
  • Yuxi Deng
  • Xianjun LiEmail author


The synthesis and electrical double-layer capacitor (EDLC) application of hierarchical porous bio-carbons with micropores to macropores have attracted considerable attention due to the limited fuels and environmental issues. The dependence of EDLC performance on the microstructure, pore texture, electrical conductivity and surface functionality of porous carbon aerogels (PCAs) originating from bamboo cellulose, were investigated. The result demonstrates that the highest stability EDLC has excellent cycle life with 100% capacitance retention at 30,000th cycle, which is mainly attributed to a hierarchically porous structure of owning a large micropore volume and a small mean pore size instead of the highest specific surface area. The superior capacitance and rate capability are highly dependent on the surface area and pore volume of PCAs, which are improved by increasing both activation temperature and KOH mass. These results provide another view for developing renewable and high-stable supercapacitors based on porous carbon aerogels with a large micropore volume.


Porous carbon aerogels Bamboo cellulose fibers Hierarchical porous structure Supercapacitors 



This work was financially supported by the Foundation of Central South University of Forestry and Technology (2018YJ033) and National Key Research and Development Program of China (2017YFD0600804).

Supplementary material

10934_2019_780_MOESM1_ESM.docx (263 kb)
Supplementary material 1 (DOCX 262 kb)


  1. 1.
    H. Jin, J. Li, Y. Yuan, J. Wang, J. Lu, S. Wang, Adv. Energy Mater. 8, 1801007 (2018)Google Scholar
  2. 2.
    G. Lin, R. Ma, Y. Zhou, Q. Liu, X. Dong, J. Wang, Electrochim. Acta 261, 49–57 (2018)Google Scholar
  3. 3.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)PubMedGoogle Scholar
  4. 4.
    Y. Xu, S. Wang, M. Yan, L. Zhang, Z. Zhai, Z. Liu, J. Porous Mater. 25, 1–7 (2018)Google Scholar
  5. 5.
    M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 6, 1249–1259 (2013)Google Scholar
  6. 6.
    R. Thangavel, B. Moorthy, D.K. Kim, Y.S. Lee, Adv. Energy Mater. 7, 1602654 (2017)Google Scholar
  7. 7.
    G. Ma, Q. Yang, K. Sun, H. Peng, F. Ran, X. Zhao, Z.Q. Lei, Bioresource Technol. 197, 137–142 (2015)Google Scholar
  8. 8.
    Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang, L. Zhou, J. Power Sources 225, 101–107 (2013)Google Scholar
  9. 9.
    Y. Liu, Z. Shi, Y. Gao, W. An, Z. Cao, J. Liu, A.C.S. Appl, Mater. Inter. 8, 28283–28290 (2016)Google Scholar
  10. 10.
    P. Cheng, S. Gao, P. Zang, X. Yang, Y. Bai, H. Xu, Z. Liu, Z. Lei, Carbon 93, 315–324 (2015)Google Scholar
  11. 11.
    P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C.P. Wong, A. Umar, Nanoscale 6, 12120 (2014)PubMedGoogle Scholar
  12. 12.
    X. Xu, J. Zhou, D.H. Nagaraju, L. Jiang, V.R. Marinov, G. Lubineau, H.N. Alshareef, M. Oh, Adv. Funct. Mater. 25, 3193–3202 (2015)Google Scholar
  13. 13.
    Y. Hu, X. Tong, H. Zhuo, L. Zhong, X. Peng, S. Wang, R. Sun, RSC Adv. 6, 15788–15795 (2016)Google Scholar
  14. 14.
    H. Zhuo, Y.J. Hu, T. Xing, L.X. Zhong, X.W. Peng, R.C. Sun, Ind. Crop Prod. 87, 229–235 (2016)Google Scholar
  15. 15.
    G. Zu, J. Shen, L. Zou, F. Wang, X. Wang, Y. Zhang, X. Yao, Carbon 99, 203–211 (2016)Google Scholar
  16. 16.
    J. Li, X. Wang, Y. Wang, Q. Huang, C. Dai, S. Gamboa, P.J. Sebastian, J. Non-Cryst. Solids 354, 19–24 (2008)Google Scholar
  17. 17.
    M. Oschatz, S. Boukhalfa, W. Nickel, J.P. Hofmann, C. Fischer, G. Yushin, S. Kaskel, Carbon 113, 283–291 (2017)Google Scholar
  18. 18.
    J. Zhang, X.S. Zhao, Chemsuschem 5, 818–841 (2012)PubMedGoogle Scholar
  19. 19.
    M. Seredych, D. Hulicova-Jurcakova, Q.L. Gao, T.J. Bandosz, Carbon 46, 1475–1488 (2008)Google Scholar
  20. 20.
    S.L. Candelaria, G. Cao, Sci. Bull. 60, 1–11 (2015)Google Scholar
  21. 21.
    J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313, 1760–1763 (2006)PubMedGoogle Scholar
  22. 22.
    J.S. Huang, B.G. Sumpter, V. Meunier, Chemistry 14, 6614–6626 (2010)Google Scholar
  23. 23.
    C. Merlet, B. Rotenberg, P.A. Madden, P.L. Taberna, P. Simon, Y. Gogotsi, M. Salanne, Nat. Mater. 11, 306–310 (2012)PubMedGoogle Scholar
  24. 24.
    A. Barroso-Bogeat, M. Alexandre-Franco, C. Fernández-González, A. Macías-García, V. Gómez-Serrano, Micropro. Mesopro. Mat. 209, 90–98 (2015)Google Scholar
  25. 25.
    K. Karthikeyan, S. Amaresh, S.N. Lee, X. Sun, V. Aravindan, Y.G. Lee, Y.S. Lee, Chemsuschem 7, 1435–1442 (2014)PubMedGoogle Scholar
  26. 26.
    L. Qiang, Z. Hu, Z. Li, Y. Yang, X. Wang, Y. Zhou, X. Zhang, W. Wang, Q. Wang, J. Porous Mater. (2019). CrossRefGoogle Scholar
  27. 27.
    J. Wang, S. Kaskel, J. Mater. Chem. 22, 23710–23725 (2012)Google Scholar
  28. 28.
    X. Yang, B.H. Fei, J.F. Ma, X.E. Liu, S.M. Yang, G.L. Tian, Z.H. Jiang, Carbohyd. Polym. 180, 385–392 (2018)Google Scholar
  29. 29.
    W. Zhang, H. Lin, Z. Lin, J. Yin, H. Lu, D. Liu, M. Zhao, Chemsuschem 8, 2114–2122 (2015)PubMedGoogle Scholar
  30. 30.
    Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.J. Chang, S.J. Baek, Y.S. Huh, Y. Tak, Y.W. Park, S. Park, H. Jin, Adv. Mater. 25, 1993–1998 (2013)PubMedGoogle Scholar
  31. 31.
    J. Zhou, M. Wang, X. Li, J. Porous Mater. 26, 99–108 (2019)Google Scholar
  32. 32.
    J. Yi, Q. Yan, C.T. Wu, Y. Zeng, Y. Wu, X. Lu, Y. Tong, J. Power Sources 351, 130–137 (2017)Google Scholar
  33. 33.
    J. Yin, D. Zhang, J. Zhao, X. Wang, H. Zhu, C. Wang, Electrochim. Acta 136, 504–512 (2014)Google Scholar
  34. 34.
    S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, C.M. Li, Adv. Energy Mater. 7, 1702545 (2017)Google Scholar
  35. 35.
    Z. Wang, Y. Tan, Y. Yang, X. Zhao, Y. Liu, L. Niu, B. Tichnell, L. Kong, Z. Liu, F. Ran, J. Power Sources 378, 499–510 (2018)Google Scholar
  36. 36.
    C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, J. Am. Chem. Soc. 130, 2730–2731 (2008)PubMedGoogle Scholar
  37. 37.
    D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Adv. Funct. Mater. 19, 438–447 (2009)Google Scholar
  38. 38.
    A. Eftekhari, M. Mohamedi, Mater. Today Energy 6, 211–229 (2017)Google Scholar
  39. 39.
    X. Guo, J. Energy Chem. 25, 26–34 (2016)Google Scholar
  40. 40.
    E.U.E. Com, E. Com, J. Energy Chem. 26, 783–789 (2017)Google Scholar
  41. 41.
    M. Yu, J. Li, L. Wang, Chem. Eng. J. 310, 300–306 (2016)Google Scholar
  42. 42.
    R. Thangavel, K. Kaliyappan, H.V. Ramasamy, X. Sun, Y.S. Lee, Chemsuschem 10, 2805–2815 (2017)PubMedGoogle Scholar
  43. 43.
    A. Eftekhari, J. Mater. Chem. A 6, 2866–2876 (2018)Google Scholar
  44. 44.
    A. Eftekhari, ACS Sustain. Chem. Eng. 7, 3692–3701 (2019)Google Scholar
  45. 45.
    D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dincă, Nat. Mater. 16, 220–224 (2017)PubMedGoogle Scholar
  46. 46.
    A. Vu, X. Li, J. Phillips, A. Han, W.H. Smyrl, P. Bühlmann, Chem. Mater. 25, 4137–4148 (2013)Google Scholar
  47. 47.
    Q. Wang, J. Yan, Y.B. Wang, T. Wei, M.L. Zhang, X.Y. Jing, Z.J. Fan, Carbon 67, 119–127 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringCentral South University of Forestry and TechnologyChangshaPeople’s Republic of China
  2. 2.Department of Biomaterials, Key Laboratory of Bamboo and Rattan Science and TechnologyInternational Centre for Bamboo and RattanBeijingPeople’s Republic of China

Personalised recommendations