Advertisement

Journal of Porous Materials

, Volume 26, Issue 6, pp 1831–1838 | Cite as

CO2 capture using amine incorporated UiO-66 in atmospheric pressure

  • Suresh MutyalaEmail author
  • Ya-Dong Yu
  • Wei-Guang Jin
  • Zhi-Shuo Wang
  • Deng-Yue Zheng
  • Chun-Rong Ye
  • Binbin Luo
Article
  • 44 Downloads

Abstract

Composite material, tetraethylenepentamine (TEPA) incorporated UiO-66 was prepared by impregnation method to study CO2 capture in a fixed bed reactor, atmospheric pressure. All synthesized adsorbents were characterized using PXRD, N2 adsorption–desorption isotherms, FT-IR, TGA, SEM, and Elemental analysis. Characterization results have revealed that incorporated TEPA was present within pores of UiO-66. CO2 adsorption was higher on TEPA incorporated UiO-66 compared to UiO-66. It was due to the chemical interaction between –NH2 and CO2. High CO2 adsorption capacity 3.70 mmol g−1 was obtained on 30TEPA/UiO-66 at 75 °C, 1 bar. Because of more flexibility and high dispersive nature of TEPA at this temperature. The same CO2 adsorption capacity was obtained in each adsorption cycle without decomposition of the amine on 30TEPA/UiO-66. Avrami adsorption kinetic model has suggested adsorption of CO2 on composite material was chemical adsorption and deactivation model suggested an initial rate of adsorption was higher on TEPA incorporated UiO-66.

Keywords

Tetraethylenepentamine UiO-66 CO2 capture Fixed bed reactor Adsorption kinetic model Deactivation model 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC: 51702205) and STU scientific research foundation for Talents (NTF17001).

References

  1. 1.
    M. Li, K. Huang, J.A. Schott, Z. Wu, S. Dai, Microporous Mesoporous Mater. 249, 34–41 (2017)CrossRefGoogle Scholar
  2. 2.
    D. Aaron, C. Tsouris, Sep. Sci. Technol. 40, 321–348 (2005)CrossRefGoogle Scholar
  3. 3.
    B. Guo, L. Chang, K. Xie, J. Nat. Gas Chem. 15, 223–229 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Hu, C. Li, D. Wan, K. Li, C. Yu, W. Kong, J. Porous Mater. 25, 1691–1696 (2018)CrossRefGoogle Scholar
  5. 5.
    M.R. Delgado, C.O. Arean, Energy 36, 5286–5291 (2011)CrossRefGoogle Scholar
  6. 6.
    F. Gholipour, M. Mofarahi, J. Supercrit. Fluids 111, 47–54 (2016)CrossRefGoogle Scholar
  7. 7.
    N. Chalal, H. Bouhali, H. Hamaizi, B. Lebeau, A. Bengueddach, Microporous Mesoporous Mater. 210, 32–38 (2015)CrossRefGoogle Scholar
  8. 8.
    T.L. Chew, A.L. Ahmad, S. Bhatia, Adv. Colloid Interface Sci. 153, 43–57 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Dhakshinamoorthy, A.M. Asiri, J.R. Herance, H. Garcia, Catal. Today 306, 2–8 (2018)CrossRefGoogle Scholar
  10. 10.
    O.A. Kholdeeva, Catal. Today 278, 22–29 (2016)CrossRefGoogle Scholar
  11. 11.
    B. Li, H. Wang, B. Chen, Chem. Asian J. 9, 1474–1498 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Argoub, R. Ghezini, C. Bachir, B. Boukoussa, A. Khelifa, A. Bengueddach, P.G. Weidler, R. Hamacha, J. Porous Mater. 25, 199–205 (2018)CrossRefGoogle Scholar
  13. 13.
    C. Orellana-Tavra, S.A. Mercado, D. Fairen-Jimenez, Adv. Healthc. Mater. 5, 2261–2270 (2016)CrossRefGoogle Scholar
  14. 14.
    C.-Y. Sun, C. Qin, X.-L. Wang, Z.-M. Su, Expert Opin. Drug Deliv. 10, 89–101 (2013)CrossRefGoogle Scholar
  15. 15.
    E. Redel, Z. Wang, S. Walheim, J. Liu, H. Gliemann, C. Wöll, Appl. Phys. Lett. 103, 091903–091907 (2013)CrossRefGoogle Scholar
  16. 16.
    H.R. Abid, Z.H. Rada, J. Shang, S. Wang, Polyhedron 120, 103–111 (2016)CrossRefGoogle Scholar
  17. 17.
    Z. Bao, S. Alnemrat, L. Yu, I. Vasiliev, Q. Ren, X. Lu, S. Deng, J. Colloid Interface Sci. 357, 504–509 (2011)CrossRefGoogle Scholar
  18. 18.
    J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, J. Am. Chem. Soc. 130, 13850–13851 (2008)CrossRefGoogle Scholar
  19. 19.
    Y. Lin, H. Lin, H. Wang, Y. Suo, B. Li, C. Kong, L. Chen, J. Mater. Chem. A 2, 14658–14665 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Martínez, R. Sanz, G. Orcajo, D. Briones, V. Yángüez, Chem. Eng. Sci. 142, 55–61 (2016)CrossRefGoogle Scholar
  21. 21.
    X. Wang, L. Chen, Q. Guo, Chem. Eng. J. 260, 573–581 (2015)CrossRefGoogle Scholar
  22. 22.
    W. Wang, X. Wang, C. Song, X. Wei, J. Ding, J. Xiao, Energy Fuels 27, 1538–1546 (2013)CrossRefGoogle Scholar
  23. 23.
    M.B. Yue, Y. Chun, Y. Cao, X. Dong, J.H. Zhu, Adv. Funct. Mater. 16, 1717–1722 (2006)CrossRefGoogle Scholar
  24. 24.
    M. Anbia, V. Hoseini, J. Nat. Gas Chem. 21, 339–343 (2012)CrossRefGoogle Scholar
  25. 25.
    C. Zlotea, D. Phanon, M. Mazaj, D. Heurtaux, V. Guillerm, C. Serre, P. Horcajada, T. Devic, E. Magnier, F. Cuevas, G. Ferey, P.L. Llewellyn, M. Latroche, Dalton Trans. 40, 4879–4881 (2011)CrossRefGoogle Scholar
  26. 26.
    K. Upendar, T.V. Sagar, G. Raveendra, N. Lingaiah, B.V.S.K. Rao, R.B.N. Prasad, P.S.S. Prasad, RSC Adv. 4, 7142–7147 (2014)CrossRefGoogle Scholar
  27. 27.
    Q. Liu, J. Shi, Q. Wang, M. Tao, Y. He, Y. Shi, Ind. Eng. Chem. Res. 53, 17468–17475 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Øien, D. Wragg, H. Reinsch, S. Svelle, S. Bordiga, C. Lamberti, K.P. Lillerud, Cryst. Growth Des. 14, 5370–5372 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Salehi, M. Anbia, Energy Fuels 31, 5376–5384 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Lin, Q. Yan, C. Kong, L. Chen, Sci. Rep. 3, 1859 (2013)CrossRefGoogle Scholar
  31. 31.
    H.R. Abid, G.H. Pham, H.M. Ang, M.O. Tade, S. Wang, J. Colloid Interface Sci. 366, 120–124 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Ding, Z. Yang, C. He, X. Tong, Y. Li, X. Niu, H. Zhang, J. Colloid Interface Sci. 497, 126–133 (2017)CrossRefGoogle Scholar
  33. 33.
    X. Wang, H. Li, X.J. Hou, J. Phys. Chem. C 116, 19814–19821 (2012)CrossRefGoogle Scholar
  34. 34.
    X. Su, L. Bromberg, V. Martis, F. Simeon, A. Huq, T.A. Hatton, A.C.S. Appl, Mater. Interfaces 9, 11299–11306 (2017)CrossRefGoogle Scholar
  35. 35.
    L. Guo, J. Yang, G. Hu, X. Hu, H. DaCosta, M. Fan, Nano Energy 25, 1–8 (2016)CrossRefGoogle Scholar
  36. 36.
    L. Guo, X. Hu, G. Hu, J. Chen, Z. Li, W. Dai, H.F.M. Dacosta, M. Fan, Fuel Process. Technol. 138, 663–669 (2015)CrossRefGoogle Scholar
  37. 37.
    G. Zhang, P. Zhao, L. Hao, Y. Xu, J CO2 Util. 24, 22–33 (2018)CrossRefGoogle Scholar
  38. 38.
    X. Wang, Q. Guo, Energy Fuels 30, 3281–3288 (2016)CrossRefGoogle Scholar
  39. 39.
    Y. Liu, J. Shi, J. Chen, Q. Ye, H. Pan, Z. Shao, Y. Shi, Microporous Mesoporous Mater. 134, 16–21 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Suresh Mutyala
    • 1
    Email author
  • Ya-Dong Yu
    • 1
  • Wei-Guang Jin
    • 1
  • Zhi-Shuo Wang
    • 1
  • Deng-Yue Zheng
    • 1
  • Chun-Rong Ye
    • 1
  • Binbin Luo
    • 1
  1. 1.Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou UniversityGuangdongChina

Personalised recommendations