Advertisement

Journal of Porous Materials

, Volume 26, Issue 6, pp 1767–1779 | Cite as

Synthesis of core–shell ZSM-5 zeolite with passivated external surface acidity by b-oriented thin silicalite-1 shell using a self-assembly process

  • Dezhi Yi
  • Xin Xu
  • Xuan Meng
  • Naiwang Liu
  • Li ShiEmail author
Article
  • 170 Downloads

Abstract

A core–shell HZSM-5@silicalite-1 zeolite coated with a relatively continuous b-oriented thin silicalite-1 shell has been synthesized by a self-assembly method of reversing the negative surface charge of ZSM-5 crystals before the secondary hydrothermal crystallization. The growth orientation of shell crystals is confirmed by electron microscopy technology. N2 adsorption–desorption, X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscope with energy-dispersive X-ray spectrometry (STEM-EDS) measurements reveal that the core ZSM-5 crystals are coated with a relatively continuous monocrystal-thick silicalite-1 shell. The surface acidity analysis (Pyridine-FTIR and 2,4,6-collidine-FTIR) combined with the two probe chemical reactions using molecules that are either too large or adequately sized to access MFI pores has confirmed the passivation of external surface acid sites without hindering the intrinsic activity of the parent HZSM-5, which is consistent with the results from the electron microscopy and textural analysis.

Keywords

ZSM-5@silicalite-1 Self-assembly b-Oriented Acidity Heterocatalysis 

Notes

Acknowledgements

This project was financially supported by the National Science Foundation for Young Scientists of China (No. 21706065), the Open Project of State Key Laboratory of Chemical Engineering (SKL-ChE-18C02), the China Postdoctoral Science Foundation (No. 2017M621389) and the Shanghai Sailing Program (No. 18YF1406300).

Supplementary material

10934_2019_776_MOESM1_ESM.doc (2.5 mb)
Supplementary material 1 (DOC 2590 kb)

References

  1. 1.
    R. Carvajal, P. Chu, J.H. Lunsford, The role of polyvalent cations in developing strong acidity: a study of lanthanum-exchanged zeolites. J. Catal. 125(1), 123–131 (1990)Google Scholar
  2. 2.
    A.A. Sokol, C.R. Catlow, J.M. Garces, A. Kuperman, Computational investigation into the origins of Lewis acidity in zeolites. Adv. Mater. 12(23), 1801–1805 (2000)Google Scholar
  3. 3.
    J.A. van Bokhoven, A.M.J. van der Eerden, D.C. Koningsberger, Three-Coordinate aluminum in zeolites observed with in situ x-ray absorption near-edge spectroscopy at the Al K-Edge: flexibility of aluminum coordinations in zeolites. J. Am. Chem. Soc. 125(24), 7435–7442 (2003)PubMedGoogle Scholar
  4. 4.
    R. Gounder, E. Iglesia, Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites. J. Am. Chem. Soc. 131(5), 1958–1971 (2009)PubMedGoogle Scholar
  5. 5.
    D.V. Vu, M. Miyamoto, N. Nishiyama, S. Ichikawa, Y. Egashira, K. Ueyama, Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites. Microporous Mesoporous Mater. 115(1–2), 106–112 (2008)Google Scholar
  6. 6.
    Y. Seo, K. Cho, Y. Jung, R. Ryoo, Characterization of the surface acidity of MFI zeolite nanosheets by 31P NMR of adsorbed phosphine oxides and catalytic cracking of decalin. ACS Catal. 3(4), 713–720 (2013)Google Scholar
  7. 7.
    D. Mitsuyoshi, K. Kuroiwa, Y. Kataoka, T. Nakagawa, M. Kosaka, K. Nakamura, S. Suganuma, Y. Araki, N. Katad, Shape selectivity in toluene disproportionation into para-xylene generated by chemical vapor deposition of tetramethoxysilane on MFI zeolite catalyst. Microporous Mesoporous Mater. 242, 118–126 (2017)Google Scholar
  8. 8.
    T. Hibino, M. Niwa, Y. Murakami, Shape-selectivity over HZSM-5 modified by chemical vapor deposition of silicon alkoxide. J. Catal. 128(2), 551–558 (1991)Google Scholar
  9. 9.
    M. Niwa, M. Kato, T. Hattori, Y. Murakami, Fine control of the pore-opening size of zeolite ZSM-5 by chemical vapor deposition of silicon alkoxide. J. Phys. Chem. 90(23), 6233–6237 (1986)Google Scholar
  10. 10.
    J. Li, H. Xiang, M. Liu, Q. Wang, Z. Zhu, Z. Hu, The deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol. Catal. Sci. Technol. 4(8), 2639–2649 (2014)Google Scholar
  11. 11.
    S. Zheng, H. Tanaka, A. Jentys, J.A. Lercher, Novel model explaining toluene diffusion in HZSM-5 after surface modification. J. Phys. Chem. B 108(4), 1337–1343 (2004)Google Scholar
  12. 12.
    J.H. Ahn, R. Kolvenbach, S.S. Al-khattaf, A. Jentysa, J.A. Lercher, Enhancing shape selectivity without loss of activity–novel mesostructured ZSM5 catalysts for methylation of toluene to p-xylene. Chem. Commun. 49(90), 10584–10586 (2013)Google Scholar
  13. 13.
    F. Lónyi, J. Engelhardt, D. Kalló, Para-selectivity of toluene ethylation over ZSM-5 catalysts. Zeolites 11(2), 169–177 (2015)Google Scholar
  14. 14.
    J. Engelhardt, D.I. Zsinka, Ethylation of toluene and transformation of p-ethyltoluene on H-ZSM-5 and ZSM-5 modified with MgO. J. Catal. 135(1), 321–324 (1992)Google Scholar
  15. 15.
    W. Tan, M. Liu, Y. Zhao, K. Hou, H. Wu, A. Zhang, H. Liu, Y. Wang, C. Song, X. Guo, Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: synergistic effects of surface modifications with SiO2, P2O5 and MgO. Microporous Mesoporous Mater. 196, 18–30 (2014)Google Scholar
  16. 16.
    J. Zhang, W. Qian, C. Kong, F. Wei, Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst. ACS Catal. 5(5), 2982–2988 (2015)Google Scholar
  17. 17.
    S. Zheng, H.R. Heydenrych, H.P. Röger, A. Jentys, J.A. Lercher, On the enhanced selectivity of HZSM-5 modified by chemical liquid deposition. Top. Catal. 22(1–2), 101–106 (2003)Google Scholar
  18. 18.
    P. Hou, H. Zhang, Z. Zi, L. Zhang, X. Xu, Core-shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries. J. Mater. Chem. A 5(9), 4254–4279 (2017)Google Scholar
  19. 19.
    A. Leidner, S. Weigel, J. Bauer, J. Reiber, A. Angelin, M. Grösche, T. Scharnweber, C.M. Niemeyer, Biopebbles: DNA-functionalized core-shell silica nanospheres for cellular uptake and cell guidance studies. Adv. Funct. Mater. 28(18), 1707572 (2018)Google Scholar
  20. 20.
    B. Banerjee, R. Singuru, S.K. Kundu, K. Dhanalaxmi, L. Bai, Y. Zhao, B.M. Reddy, A. Bhaumik, J. Mondal, Towards rational design of core-shell catalytic nanoreactor with high performance catalytic hydrogenation of levulinic acid. Catal. Sci. Technol. 6, 5102–5115 (2016)Google Scholar
  21. 21.
    E. Edri, S. Aloni, H. Frei, Fabrication of core-shell nanotube array for artificial photosynthesis featuring an ultrathin composite separation membrane. ACS Nano 12(1), 533–541 (2018)PubMedGoogle Scholar
  22. 22.
    L.D. Rollmann, ZSM-5 containing aluminum-free shells on its surface. US Patent, 4088605, 1978Google Scholar
  23. 23.
    M. Miyamoto, T. Kamei, N. Nishiyama, Y. Egashira, K. Ueyama, Single crystals of ZSM-5/silicalite composites. Adv. Mater. 17(44), 1985–1988 (2005)Google Scholar
  24. 24.
    D.V. Vu, M. Miyamoto, N. Nishiyama, Y. Egashira, K. Ueyama, Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals. J. Catal. 243(2), 389–394 (2006)Google Scholar
  25. 25.
    M. Miyamoto, K. Mabuchi, J. Kamada, Y. Hirota, Y. Oumi, N. Nishiyama, S. Uemiya, para-Selectivity of silicalite-1 coated MFI type galloaluminosilicate in aromatization of light alkanes. J. Porous Mater. 22(3), 769–778 (2015)Google Scholar
  26. 26.
    A.I. Lupulescu, J.D. Rimer, In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science 344(6185), 729–732 (2014)PubMedGoogle Scholar
  27. 27.
    A. Aerts, L.R.A. Follens, E. Biermans, S. Bals, G.V. Tendeloo, B. Loppinet, C.E.A. Kirschhock, J.A. Martens, Modelling of synchrotron SAXS patterns of silicalite-1 zeolite during crystallization. Phys. Chem. Chem. Phys. 13(10), 4318–4325 (2011)PubMedGoogle Scholar
  28. 28.
    Q. Lia, Z. Wang, J. Hedlund, D. Creaser, H. Zhang, X. Zou, A.J. Bons, Synthesis and characterization of colloidal zoned MFI crystals. Microporous Mesoporous Mater. 78(1), 1–10 (2005)Google Scholar
  29. 29.
    Y. Bouizi, L. Rouleau, V.P. Valtchev, Factors controlling the formation of core-shell zeolite-zeolite composites. Chem. Mater. 18(20), 4959–4966 (2006)Google Scholar
  30. 30.
    Y. Bouizi, I. Diaz, L. Rouleau, V.P. Valtchev, Core-shell zeolite microcomposites. Adv. Funct. Mater. 15(12), 1955–1960 (2005)Google Scholar
  31. 31.
    L. Gora, B. Sulikowski, E.M. Serwicka, Formation of structured silicalite-I/ZSM-5 composites by a self-assembly process. Appl. Catal. A 325(2), 316–321 (2007)Google Scholar
  32. 32.
    Y. Bouizi, G. Majano, S. Mintova, V.P. Valtchev, Beads comprising a hierarchical porous core and a microporous shell. J. Phys. Chem. C 111(12), 4535–4542 (2007)Google Scholar
  33. 33.
    M. Okamoto, Y. Osafune, MFI-type zeolite with a core-shell structure with minimal defects synthesized by crystal overgrowth of aluminum-free MFI-type zeolite on aluminum-containing zeolite and its catalytic performance. Microporous Mesoporous Mater. 143(2), 413–418 (2011)Google Scholar
  34. 34.
    J. Caro, M. Noack, P. Kölsch, R. Schäfer, Zeolite membranes–state of their development and perspective. Microporous Mesoporous Mater. 38(1), 3–24 (2000)Google Scholar
  35. 35.
    S. Li, X. Wang, D. Beving, Z. Chen, Y. Yan, Molecular sieving in a nanoporous b-oriented pure-silica-zeolite MFI monocrystal film. J. Am. Chem. Soc. 126(13), 4122–4123 (2004)PubMedGoogle Scholar
  36. 36.
    D. Mores, E. Stavitski, S.P. Verkleij, A. Lombard, A. Cabiac, L. Rouleau, J. Patarin, A. Simon-Masseron, B.M. Weckhuysen, Core-shell H-ZSM-5/silicalite-1 composites: Brønsted acidity and catalyst deactivation at the individual particle level. Phys. Chem. Chem. Phys. 13(35), 15985–15994 (2011)PubMedGoogle Scholar
  37. 37.
    H. Wu, M. Liu, W. Tan, K. Hou, A. Zhang, Y. Wang, X. Guo, Effect of ZSM-5 zeolite morphology on the catalytic performance of the alkylation of toluene with methanol. J. Energy Chem. 23(4), 491–497 (2014)Google Scholar
  38. 38.
    L. Xu, Y. Ren, H. Wu, Y. Liu, Z. Wang, Y. Zhang, J. Xu, H. Peng, P. Wu, Core/shell-structured TS-1@mesoporous silica-supported Au nanoparticles for selective epoxidation of propylene with H2 and O2. J. Mater. Chem. 21(29), 10852–10858 (2011)Google Scholar
  39. 39.
    V. Quaschning, J. Deutsch, P. Druska, H.J. Niclas, E. Kemnitz, Properties of modified zirconia used as friedel-crafts-acylation catalysts. J. Catal. 177(2), 164–174 (1998)Google Scholar
  40. 40.
    D. Liu, P. Yuan, H. Liu, J. Cai, D. Tan, H. He, J. Zhu, T. Chen, Quantitative characterization of the solid acidity of montmorillonite using combined FTIR and TPD based on the NH3 adsorption system. Appl. Clay Sci. 80–81(8), 407–412 (2013)Google Scholar
  41. 41.
    N.S. Nesterenko, F. Thibault-Starzyk, V. Montouilliout, V.V. Yushchenko, C. Fernandez, J.P. Gilson, F. Fajula, I.I. Ivanova, The use of the consecutive adsorption of pyridine bases and carbon monoxide in the IR spectroscopic study of the accessibility of acid sites in microporous/mesoporous materials. Kinet. Catal. 47(1), 40–48 (2006)Google Scholar
  42. 42.
    N. Brodu, M.H. Manero, C. Andriantsiferana, J.S. Pic, H. Valdés, Role of Lewis acid sites of ZSM-5 zeolite on gaseous ozone abatement. Chem. Eng. J. 231, 281–286 (2013)Google Scholar
  43. 43.
    J.C. Groen, L.A.A. Peffer, J. Pérez-Ramı́rez, Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60(1), 1–17 (2003)Google Scholar
  44. 44.
    Y. Liu, X. Zhou, X. Pang, Y. Jin, X. Meng, X. Zheng, X. Gao, F.S. Xiao, Improved para-xylene selectivity in meta-xylene isomerization over ZSM-5 crystals with relatively long b-axis length. Chemcatchem 5(6), 1517–1523 (2013)Google Scholar
  45. 45.
    G.T. Kokotailo, S.L. Lawton, D.H. Olson, Structure of synthetic zeolite ZSM-5. Nature 272(5652), 437–438 (1978)Google Scholar
  46. 46.
    A.E. Hughes, K.G. Wilshier, B.A. Sexton, P. Smart, Aluminum distribution in ZSM-5 as determined by X-ray photoelectron spectroscopy. J. Catal. 80(1), 221–227 (1983)Google Scholar
  47. 47.
    G. Mattogno, G. Righini, G. Montesperelli, E. Traversa, XPS analysis of the interface of ceramic thin films for humidity sensors. Appl. Surf. Sci. 70(93), 363–366 (1993)Google Scholar
  48. 48.
    G. Delahay, M. Mauvezin, B. Coq, S. Kieger, Selective catalytic reduction of nitrous oxide by ammonia on iron zeolite beta catalysts in an oxygen rich atmosphere: effect of iron contents. J. Catal. 202(1), 156–162 (2001)Google Scholar
  49. 49.
    F. Thibault-Starzyk, I. Stan, S. Abelló, A. Bonilla, K. Thomas, C. Fernandez, J.P. Gilson, J. Pérez-Ramírez, Quantification of enhanced acid site accessibility in hierarchical zeolites-The accessibility index. J. Catal. 264(1), 11–14 (2009)Google Scholar
  50. 50.
    O.A. Anunziata, G.A. Eimer, L.B. Pierella, Catalytic conversion of natural gas with added ethane and LPG over Zn-ZSM-11. Appl. Catal. A-Gen. 190(1), 169–176 (2000)Google Scholar
  51. 51.
    E.L. First, C.E. Gounaris, J. Wei, C.A. Floudas, Computational characterization of zeolite porous networks: an automated approach. Phys. Chem. Chem. Phys. 13(38), 17339–17358 (2011)PubMedGoogle Scholar
  52. 52.
    J.P. Marques, I. Gener, P. Ayrault, J.C. Bordado, J.M. Lopes, F.R. Ribeiro, M. Guisnet, Dealumination of HBEA zeolite by steaming and acid leaching: distribution of the various aluminic species and identification of the hydroxyl group. C. R. Chim. 8, 399–410 (2005)Google Scholar
  53. 53.
    P. Kalita, N.M. Gupta, R. Kumar, Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce-Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies. J. Catal. 245(2), 338–347 (2007)Google Scholar
  54. 54.
    T. Odedairo, R.J. Balasamy, S. Al-Khattaf, Influence of mesoporous materials containing ZSM-5 on alkylation and cracking reactions. J. Mol. Catal. A 345(1), 21–36 (2011)Google Scholar
  55. 55.
    K.A. Tarach, J. Martinez-Triguero, F. Rey, K. Góra-Marek, Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5. J. Catal. 339, 256–269 (2016)Google Scholar
  56. 56.
    W. Kaeding, C. Chu, L. Young, B. Weinstein, S. Butter, Selective alkylation of toluene with methanol to produce para-xylene. J. Catal. 67(1), 159–174 (1981)Google Scholar
  57. 57.
    J. Wei, A mathematical theory of enhanced para-xylene selectivity in molecular sieve catalysts. J. Catal. 76(2), 433–439 (1982)Google Scholar
  58. 58.
    J. Zhang, X. Zhu, G. Wang, P. Wang, Z. Meng, C. Li, The origin of the activity and selectivity of silicalite-1 zeolite for toluene methylation to para-xylene. Chem. Eng. J. 327, 278–285 (2017)Google Scholar
  59. 59.
    P. Liu, Z. Fei, L. Li, X. Feng, W. Ji, W. Ding, Y. Chen, W. Yang, Z. Xie, Effects of controlled SiO2 deposition and phosphorus and nickel doping on surface acidity and diffusivity of medium and small sized HZSM-5 for para-selective alkylation of toluene by methanol. Appl. Catal. A 453, 302–309 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Applied PhysicsNorthwestern UniversityEvanstonUSA

Personalised recommendations