Journal of Porous Materials

, Volume 26, Issue 6, pp 1781–1794 | Cite as

Acoustical characteristics of ultralight polylactic acid foams fabricated via solution phase inversion

  • Edith Roland Fotsing
  • Ehsan RezabeigiEmail author
  • Annie Ross
  • Paula M. Wood-Adams
  • Robin A. L. Drew


The acoustic properties of highly porous polylactic acid (PLA) foams with very low densities (as low as 0.12 g/cm3) are evaluated using an impedance tube. PLA foams with a mesoporous or a combined meso/macroporous morphology exhibiting different mechanical and physical properties, are produced via nonsolvent induced phase separation (NIPS). The resulting foams exhibit an interesting resonance-like acoustic absorption behavior providing the opportunity to design acoustic materials to target specific frequency bands by controlling their microstructure. Despite very low densities, plane wave tube measurements suggest that these PLA foams may have the potential for sound barrier applications. Using the transfer matrix approach on multilayer configurations, we showed that the combined meso/macroporous morphology has the most significant impact on the absorption and transmission capacity of the foams. The knowledge produced from this study helps to understand the correlation between the characteristics of highly porous NIPS-derived foams and their acoustic properties.


Foams Microstructure Phase separation Absorption Impedance Transmission 



Funding provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), École Polytechnique, and Concordia University. The authors wish to thank Arnaud Dubourg for initiating the project and for doing some of the preliminary measurements. Also, the authors are thankful to the anonymous reviewers for the very constructive comments and suggestions.

Supplementary material

10934_2019_775_MOESM1_ESM.docx (39 kb)
Supplementary material 1 (DOCX 39 kb)


  1. 1.
    F. Chevillotte, C. Perrot, R. Panneton, J. Acoust. Soc. Am. 128, 1766 (2010)CrossRefGoogle Scholar
  2. 2.
    C. Perrot, F. Chevillotte, M. Hoang, G. Bonnet, F.-X. Bécot, L. Gautron et al., J. Appl. Phys. 111, 014911 (2012)CrossRefGoogle Scholar
  3. 3.
    L.-P. Lefebvre, J. Banhart, D. Dunand, Adv. Eng. Mater. 10, 775 (2008)CrossRefGoogle Scholar
  4. 4.
    K.M. Nampoothiri, N.R. Nair, R.P. John, Bioresour. Technol. 101, 8493 (2010)CrossRefGoogle Scholar
  5. 5.
    E. Rezabeigi, P.M. Wood-Adams, R.A. Drew, Polymer 55, 3100 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Nofar, C.B. Park, Prog. Polym. Sci. 39, 1721 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Griffin, S.A. Lane, S. Huybrechts, J. Vib. Acoust. 123, 11 (2001)CrossRefGoogle Scholar
  8. 8.
    V. Tarnow, J. Acoust. Soc. Am. 100, 3706 (1996)CrossRefGoogle Scholar
  9. 9.
    J. Allard, N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e (Wiley, Chichester, 2009)CrossRefGoogle Scholar
  10. 10.
    S. Gasser, F. Paun, Y. Bréchet, J. Acoust. Soc. Am. 117, 2090 (2005)CrossRefGoogle Scholar
  11. 11.
    C. Perrot, F. Chevillotte, R. Panneton, J. Appl. Phys. 103, 024909 (2008)CrossRefGoogle Scholar
  12. 12.
    R. Venegas, O. Umnova, J. Acoust. Soc. Am. 130, 2765 (2011)CrossRefGoogle Scholar
  13. 13.
    X. Olny, C. Boutin, J. Acoust. Soc. Am. 114, 73 (2003)CrossRefGoogle Scholar
  14. 14.
    F. Chevillotte, C. Perrot, E. Guillon, J. Acoust. Soc. Am. 134, 4681 (2013)CrossRefGoogle Scholar
  15. 15.
    K. Attenborough, Appl. Acoust. 130, 188 (2018)CrossRefGoogle Scholar
  16. 16.
    E. Rezabeigi, P.M. Wood-Adams, R.A. Drew, Polymer 55, 6743 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Di Luccio, R. Nobrega, C. Borges, Polymer 41, 4309 (2000)CrossRefGoogle Scholar
  18. 18.
    E. Rezabeigi, R.A. Drew, P.M. Wood-Adams, Ind. Eng. Chem. Res. 56, 11451 (2017)CrossRefGoogle Scholar
  19. 19.
    E.R. Fotsing, E. Rezabeigi, A. Dubourg, A. Ross, P.M. Woods-Adams, R.A.L. Drew, Acoustic properties of porous PLA monoliths produced via nonsolvent induced phase separation, in 24th International Congress of Theoretical and Applied Mechanics (ICTAM), Montreal, QC, Canada, 21–26 August, 2016Google Scholar
  20. 20.
    D. Lee, Y. Kwon, J. Sound Vib. 278, 847 (2004)CrossRefGoogle Scholar
  21. 21.
    E. Rezabeigi, P.M. Wood-Adams, R.A. Drew, J. Polym. Sci. Part B 55, 1055 (2017)CrossRefGoogle Scholar
  22. 22.
    ASTM, 1050-12, Standard, American Society for Testing and Materials (2012)Google Scholar
  23. 23.
    ASTM, E2611-09, Standard, American Society for Testing and Materials (2009)Google Scholar
  24. 24.
    C.-M. Lee, Y. Xu, J. Sound Vib. 326, 290 (2009)CrossRefGoogle Scholar
  25. 25.
    R. Dragonetti, C. Ianniello, R.A. Romano, J. Acoust. Soc. Am. 129, 753 (2011)CrossRefGoogle Scholar
  26. 26.
    F.J. Hua, T.G. Park, D.S. Lee, Polymer 44, 1911 (2003)CrossRefGoogle Scholar
  27. 27.
    K. Ishizaki, S. Komarneni, M. Nanko, Porous Materials: Process Technology and Applications, vol. 4 (Springer, Boston, 2013)Google Scholar
  28. 28.
    D. Jahani, A. Ameli, P. Jung, M. Barzegari, C. Park, H. Naguib, Mater. Des. 53, 20 (2014)CrossRefGoogle Scholar
  29. 29.
    E. Lind-Nordgren, P. Göransson, J. Sound Vib. 329, 753 (2010)CrossRefGoogle Scholar
  30. 30.
    F. Sgard, N. Atalla, C. Amedin, Acta Acust. United Acust. 93, 106 (2007)Google Scholar
  31. 31.
    S.M. Hasheminejad, Int. J. Solids Struct. 35, 129 (1998)CrossRefGoogle Scholar
  32. 32.
    L. Jaouen, F.-X. Bécot, J. Acoust. Soc. Am. 129, 1400 (2011)CrossRefGoogle Scholar
  33. 33.
    A. Peiffer, M. Grünewald, P. Lempereur, Appl. Phys. Lett. 107, 216101 (2015)CrossRefGoogle Scholar
  34. 34.
    D. Griese, J.D. Summers, L. Thompson, J. Vib. Acoust. 137(2), 021011 (2014)Google Scholar
  35. 35.
    Y. Salissou, R. Panneton, O. Doutres, J. Acous. Soc. Am. 131, El216 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LAVA, Department of Mechanical EngineeringÉcole PolytechniqueMontrealCanada
  2. 2.Department of MechanicalIndustrial and Aerospace Engineering, Concordia UniversityMontrealCanada

Personalised recommendations