Advertisement

Journal of Porous Materials

, Volume 26, Issue 6, pp 1721–1729 | Cite as

Synthesis, characterization and antibacterial activity of imidazole-functionalized Ag/MIL-101(Cr)

  • Majid Hajibabaei
  • Mostafa M. Amini
  • Rezvan ZendehdelEmail author
  • Mohamad Javad Nasiri
  • Amir Peymani
Article
  • 122 Downloads

Abstract

Nowadays, nanomaterials have rapidly developed as a new generation of antibacterial agents. However, high local aggregation and concentration, and possible toxicity due to excess leaching are disadvantages of nanoparticles. Unique features of metal–organic frameworks (MOFs) such as coordinately unsaturated centers, high surface area and facile synthesis attracted attention to overcome the above-mentioned problems. In this context, Ag/MIL-101(Cr)/IMI was synthesized, and after characterization by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM–EDX), Transmission Electron Microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), inductively coupled plasma-optical emission spectrometry and BET surface area, TG–DTA was used as an antibacterial agent. Imidazole-functionalized Ag/MIL-101(Cr)/IMI presented a synergistic effect of imidazole and silver NPs against Escherichia coli (ATCC25292) and Staphylococcus aureus (ATCC25293) bacteria. The best antibacterial activity as minimum inhibitory concentration (MIC) was 6.2 µg/mL and 24.78 µg/mL of silver content against E. coli and S. aureus, respectively. There were 81 and 144.9 mg of Ag and imidazole per each gram of Ag/MIL-101(Cr)/IMI, which leaching rates of Ag, imidazole and Cr were 150, 828 and 153 µg/L, respectively. This leaching level of imidazole was lower than the amount recommended by Registry of Toxic Effects of Chemical Substances (RTECS) from NIOSH, while the leaching levels of silver NP and chromium is tended to be around the standard of WHO and U.S.EPA.

Keywords

Post-synthetic strategy MIL-101(Cr) Silver nanoparticles Imidazole Antibacterial properties Leaching 

Notes

Acknowledgement

This research was part of a PhD thesis and financially supported by the School of Public Health and safety, Shahid Beheshti University of Medical Sciences (Grant No. IR.SBMU.PHNS.REC.1396.58).

Supplementary material

10934_2019_773_MOESM1_ESM.docx (450 kb)
Supplementary material 1 (DOCX 449 kb)

References

  1. 1.
    A.Y. Peleg, D.C. Hooper, N. Engl. J. Med. 362, 1804 (2010)PubMedPubMedCentralGoogle Scholar
  2. 2.
    P. Appendini, J.H. Hotchkiss, Innov. Food Sci. Emerg. Technol. 3, 113 (2002)Google Scholar
  3. 3.
    R. Dastjerdi, M. Montazer, Colloids surf. B 79, 5 (2010)Google Scholar
  4. 4.
    Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Water Res. 42, 4591 (2008)PubMedGoogle Scholar
  5. 5.
    B. Flannigan, R.A. Samson, J.D. Miller, Microorganisms in home and indoor work environments: diversity, health impacts, investigation and control (CRC Press, Boca Raton, 2002)Google Scholar
  6. 6.
    S.C. Verde, S.M. Almeida, J. Matos, D. Guerreiro, M. Meneses, T. Faria, D. Botelho, M. Santos, C. Viegas, Res. Microbiol. 166, 557 (2015)Google Scholar
  7. 7.
    R. D. Scott, The direct medical costs of healthcare-associated infections in US hospitals and the benefits of prevention. http://www.cdc.gov/HAI/pdfs/hai/Scott_CostPaper.pdf. Accessed 4 Feb 2014
  8. 8.
    A. Jain, L.S. Duvvuri, S. Farah, N. Beyth, A.J. Domb, W. Khan, Adv. Healthc. Mater. 3, 1969 (2014)PubMedGoogle Scholar
  9. 9.
    G. Yao, J. Lei, W. Zhang, C. Yu, Z. Sun, S. Zheng, Z. Sun, S. Zheng, S. Komarneni, Environ. Sci. Pollut. Res. 26, 2782 (2019)Google Scholar
  10. 10.
    S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Mater. Sci. Eng. C 44, 278 (2014)Google Scholar
  11. 11.
    V.V. Kumar, S.P. Anthony, in Surface Chemistry of Nanobiomaterials, ed. by A.M. Grumezescu (Elsevier, Amsterdam, 2016), p. 265Google Scholar
  12. 12.
    C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu, C.-M. Che, J. Biol. Inorg. Chem. 12, 527 (2007)PubMedGoogle Scholar
  13. 13.
    S. Chernousova, M. Epple, Angew. Chem. Int. Ed. 52, 1636 (2013)Google Scholar
  14. 14.
    C. Marambio-Jones, E.M.V. Hoek, J. Nanoparticle Res. 12, 1531 (2010)Google Scholar
  15. 15.
    L. Guo, W. Yuan, Z. Lu, C.M. Li, Colloids Surf. A 439, 69 (2013)Google Scholar
  16. 16.
    G.A. Sotiriou, A. Teleki, A. Camenzind, F. Krumeich, A. Meyer, S. Panke, S.E. Pratsinis, Chem. Eng. J. 170, 547 (2011)PubMedPubMedCentralGoogle Scholar
  17. 17.
    M. Liong, B. France, K.A. Bradley, J.I. Zink, Adv. Mater. 21, 1684 (2009)Google Scholar
  18. 18.
    R.N.M. Missengue, N.M. Musyoka, G. Madzivire, O. Babajide, O.O. Fatoba, M. Tuffin, L.F. Petrik, J. Environ. Sci. Health A 51, 97 (2016)Google Scholar
  19. 19.
    N. Lubick, Environ. Sci. Technol. 42, 8617 (2008)PubMedGoogle Scholar
  20. 20.
    H.-C. Zhou, S. Kitagawa, Chem. Soc. Rev. 43, 5415 (2014)Google Scholar
  21. 21.
    H.-C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev. 112, 673 (2012)PubMedGoogle Scholar
  22. 22.
    J.L.C. Rowsell, O.M. Yaghi, Microporous Mesoporous Mater 73, 3 (2004)Google Scholar
  23. 23.
    J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38, 1477 (2009)PubMedGoogle Scholar
  24. 24.
    J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chem. Soc. Rev. 38, 1450 (2009)PubMedGoogle Scholar
  25. 25.
    L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Chem. Rev. 112, 1105 (2011)PubMedGoogle Scholar
  26. 26.
    P. Kumar, A. Deep, K.-H. Kim, TrAC. Trends Anal. Chem. 73, 39 (2015)Google Scholar
  27. 27.
    P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y.K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Nat. Mater. 9, 172 (2010)PubMedGoogle Scholar
  28. 28.
    E. Adatoz, A.K. Avci, S. Keskin, Sep. Purif. Technol. 152, 207 (2015)Google Scholar
  29. 29.
    A. Argoub, R. Ghezini, C. Bachir, B. Boukoussa, A. Khelifa, A. Bengueddach, P.G. Weidler, R. Hamacha, J. Porous Mater. 25, 199 (2018)Google Scholar
  30. 30.
    S. Gwardiak, B. Szczęśniak, J. Choma, M. Jaroniec, J. Porous Mater. 26, 775 (2019)Google Scholar
  31. 31.
    H. Jasuja, G.W. Peterson, J.B. Decoste, M.A. Browe, K.S. Walton, Chem. Eng. Sci. 124, 118 (2015)Google Scholar
  32. 32.
    J.B. DeCoste, G.W. Peterson, Chem. Rev. 114, 5695 (2014)PubMedGoogle Scholar
  33. 33.
    A.C. McKinlay, R.E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur, C. Serre, Angew. Chem. Int. Ed. 49, 6260 (2010)Google Scholar
  34. 34.
    P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, R.E. Morris, C. Serre, Chem. Rev. 112, 1232 (2011)PubMedGoogle Scholar
  35. 35.
    S. Aguado, J. Quirós, J. Canivet, D. Farrusseng, K. Boltes, R. Rosal, Chemosphere 113, 188 (2014)PubMedGoogle Scholar
  36. 36.
    Y.-F. Guo, W.-J. Fang, J.-R. Fu, Y. Wu, J. Zheng, G.-Q. Gao, C. Chen, R.-W. Yan, S.-G. Huang, C.-C. Wang, Appl. Surf. Sci. 435, 149 (2018)Google Scholar
  37. 37.
    G. Ximing, G. Bin, W. Yuanlin, G. Shuanghong, Mater. Sci. Eng. C 80, 698 (2017)Google Scholar
  38. 38.
    T. Hu, Q. Jia, S. He, S. Shan, H. Su, Y. Zhi, L. He, J. Alloys Compd. 727, 114 (2017)Google Scholar
  39. 39.
    S. Wang, L. Bromberg, H. Schreuder-Gibson, T.A. Hatton, ACS Appl. Mater. Interfaces 5, 1269 (2013)PubMedGoogle Scholar
  40. 40.
    Y.K. Hwang, D. Hong, J. Chang, S.H. Jhung, Y. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Angew. Chem. 120, 4212 (2008)Google Scholar
  41. 41.
    N. Tian, Q. Jia, H. Su, Y. Zhi, A. Ma, J. Wu, S.Y. Shan, J. Porous Mater. 23, 1269 (2016)Google Scholar
  42. 42.
    A. Samadi-Maybodi, S. Ghasemi, H. Ghaffari-Rad, Electrochim. Acta 163, 280 (2015)Google Scholar
  43. 43.
    D. Rao, R. Lu, C. Xiao, E. Kan, K. Deng, Chem. Commun. 47, 7698 (2011)Google Scholar
  44. 44.
    Q. Liang, M. Zhang, Z. Zhang, C. Liu, S. Xu, Z. Li, J. Alloys Compd. 690, 123 (2017)Google Scholar
  45. 45.
    Y. Lin, C. Kong, L. Chen, RSC Adv. 6, 32598 (2016)Google Scholar
  46. 46.
    N. Rani, A. Sharma, R. Singh, Mini. Rev. Med. Chem. 13, 1812 (2013)PubMedGoogle Scholar
  47. 47.
    X. Guo, J. Shao, H. Liu, B. Chen, W. Chen, Y. Yu, RSC Adv. 5, 51559 (2015)Google Scholar
  48. 48.
    J. Pandey, V.K. Tiwari, S.S. Verma, V. Chaturvedi, S. Bhatnagar, S. Sinha, A.N. Gaikwad, P.R. Tripathia, Eur. J. Med. Chem. 44, 3350 (2009)PubMedGoogle Scholar
  49. 49.
    E. Eisbein, J.-O. Joswig, G. Seifert, Microporous Mesoporous Mater. 216, 36 (2015)Google Scholar
  50. 50.
    S. Liu, Z. Yue, Y. Liu, Dalt. Trans. 44, 12976 (2015)Google Scholar
  51. 51.
    F.-M. Zhang, L.-Z. Dong, J.-S. Qin, W. Guan, J. Liu, S.-L. Li, M. Lu, Y.-Q. Lan, Z.-M. Su, H.-C. Zhou, J. Am. Chem. Soc. 139, 6183 (2017)PubMedGoogle Scholar
  52. 52.
    J. Li, T. Qi, L. Wang, C. Liu, Y. Zhang, Mater. Lett. 61, 3197 (2007)Google Scholar
  53. 53.
    A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, H. Sharghi, J. Nanomater. 16, 53 (2015)Google Scholar
  54. 54.
    S.A.M. Hanim, N.A.N.N. Malek, Z. Ibrahim, Vacuum 143, 344 (2017)Google Scholar
  55. 55.
    T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Front. Microbiol. 7, 1831 (2016)PubMedPubMedCentralGoogle Scholar
  56. 56.
    L. Bromberg, Y. Diao, H. Wu, S.A. Speakman, T.A. Hatton, Chem. Mater. 24, 1664 (2012)Google Scholar
  57. 57.
    N. Cao, S. Tan, W. Luo, K. Hu, G. Cheng, Catal. Lett. 146, 518 (2016)Google Scholar
  58. 58.
  59. 59.
    S. Bykkam, M. Ahmadipour, S. Narisngam, V.R. Kalagadda, S.C. Chidurala, Adv. Nanopart. 4, 1 (2015)Google Scholar
  60. 60.
    I.A. Wani, S. Khatoon, A. Ganguly, J. Ahmed, A.K. Ganguli, T. Ahmad, Mater. Res. Bull. 45, 1033 (2010)Google Scholar
  61. 61.
    M. Shafiei, M.S. Alivand, A. Rashidi, A. Samimi, D. Mohebbi-Kalhori, Chem. Eng. J. 341, 164 (2018)Google Scholar
  62. 62.
    A.B. Rostam, M. Peyravi, M. Ghorbani, M. Jahanshahi, Appl. Surf. Sci. 427, 17 (2018)Google Scholar
  63. 63.
    M.B. Boroujeni, A. Hashemzadeh, M.-T. Faroughi, A. Shaabani, M.M. Amini, RSC Adv. 6, 100195 (2016)Google Scholar
  64. 64.
    Z. Sun, C. Fan, X. Tang, J. Zhao, Y. Song, Z. Shao, L. Xu, Appl. Surf. Sci. 387, 828 (2016)Google Scholar
  65. 65.
  66. 66.
  67. 67.
  68. 68.
  69. 69.
    G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, Science 309, 2040 (2005)PubMedGoogle Scholar
  70. 70.
    H.E. Emam, O.M. Darwesh, R.M. Abdelhameed, Colloids Surf. B 165, 219 (2018)Google Scholar
  71. 71.
    K. Shameli, M. Bin Ahmad, M. Zargar, W.M.Z.W. Yunus, N.A. Ibrahim, Int. J. Nanomed. 6, 331 (2011)Google Scholar
  72. 72.
    L. Ferreira, J.F. Guedes, C. Almeida-Aguiar, A.M. Fonseca, I.C. Neves, Colloids Surf. B 142, 141 (2016)Google Scholar
  73. 73.
    L. Ferreira, A.M. Fonseca, G. Botelho, C. Almeida-Aguiar, I.C. Neves, Microporous Mesoporous Mater. 160, 126 (2012)Google Scholar
  74. 74.
    X. Lu, J. Ye, D. Zhang, R. Xie, R. FeyisBogale, Y. Suna, L. Zhaoa, Q. Zhao, G. Ning, J. Inorg. Biochem. 138, 114 (2014)PubMedGoogle Scholar
  75. 75.
    B. Mortada, T.A. Matar, A. Sakaya, H. Atallah, Z. KaraAli, P. Karam, M. Hmadeh, Inorg. Chem. 56, 4739 (2017)Google Scholar
  76. 76.
    M. Berchel, T.L. Gall, C. Denis, S.L. Hir, F. Quentel, C. Elléouet, T. Montier, J.-M. Rueff, J.-Y. Salaün, J.-P. Haelters, G.B. Hix, P. Lehnb, P.-A. Jaffrès, New J. Chem. 35, 1000 (2011)Google Scholar
  77. 77.
    G. Wyszogrodzka, B. Marszałek, B. Gil, P. Dorożyński, Drug. Discov. Today 21, 1009 (2016)PubMedGoogle Scholar
  78. 78.
    M. Moritz, M. Geszke-Moritz, Chem. Eng. J. 228, 596 (2013)Google Scholar
  79. 79.
    J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, P.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Nanomed. Nanotechnol. Biol. Med. 3, 95 (2007)Google Scholar
  80. 80.
    S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Nanotechnology 18, 225103 (2007)Google Scholar
  81. 81.
    S.A.M. Hanim, N.A.N.N. Malek, Z. Ibrahim, Appl. Surf. Sci. 360, 121 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Majid Hajibabaei
    • 1
  • Mostafa M. Amini
    • 2
  • Rezvan Zendehdel
    • 1
    Email author
  • Mohamad Javad Nasiri
    • 3
  • Amir Peymani
    • 4
  1. 1.Department of Occupational Hygiene, School of Public Health and SafetyShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Department of ChemistryShahid Beheshti University, G.C.TehranIran
  3. 3.Department of Medical Microbiology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
  4. 4.Medical Microbiology Research Center, Qazvin University of Medical SciencesQazvinIran

Personalised recommendations