Advertisement

Journal of Porous Materials

, Volume 26, Issue 6, pp 1691–1698 | Cite as

Lacunary phosphomolybdate PMo11 supported on mesoporous KIT-6 as catalyst for oxidative desulfurization of model diesel

  • Alireza Najafi ChermahiniEmail author
  • Mohammad Rafiee
  • Shahram Shaybanizadeh
Article
  • 41 Downloads

Abstract

In this study, an efficient simultaneous extraction-oxidation catalytic system for deep desulfurization of a model fuel was investigated. For this purpose, mono lacunary phosphomolybdate (PMo11) was synthesized. Then a series of PMo11 catalysts were supported on mesoporous silica material (KIT-6). Structural characterization of the catalysts was performed by various techniques such as SEM, TEM, FT-IR, FT-Raman, ICP, BET and XRD. The results of the XRD and SEM analysis showed that the synthesized PMo11 has a semi-crystalline structure. It was observed that the catalyst with 30% PMo11 loading had the most catalytic activity on dibenzothiophene and benzothiophene removal in the oxidative desulfurization process. In this catalytic system, various conditions such as temperature, oxidizing agent value, catalyst amount, and extractant solvent type were varied and their effect on the reaction was evaluated. Under optimal conditions, dibenzothiophene was eliminated up to over 92.5%. The catalyst could be recycled and reused four times without significant reduction in its catalytic activity.

Keywords

Lacunary phosphomolybdate Oxidative desulfurization Dibenzothiophene Benzothiophene PMo11 KIT-6 

Notes

Acknowledgements

This work was conducted through financial support by the Isfahan University of Technology (Research Council Grant) and the Iranian National Science Foundation (INSF, Grant Number 95813865).

Supplementary material

10934_2019_770_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1699 kb)

References

  1. 1.
    L. Yang, X. Li, A. Wang, R. Prins, Y. Chen, X. Duan, J. Catal. 330, 330 (2015)Google Scholar
  2. 2.
    B. Bertleff, J. Claußnitzer, W. Korth, P. Wasserscheid, A. Jess, J. Albert, ACS Sustain. Chem. Eng. 5, 4110 (2017)Google Scholar
  3. 3.
    A. Gómez-Paricio, A. Santiago-Portillo, S. Navalón, P. Concepción, M. Alvaro, H. Garcia, Green Chem. 18, 508 (2016)Google Scholar
  4. 4.
    H. Lü, C. Deng, W. Ren, X. Yang, Fuel Process. Technol. 119, 87 (2014)Google Scholar
  5. 5.
    W. Jiang, D. Zheng, S. Xun, Y. Qin, Q. Lu, W. Zhu, H. Li, Fuel 190, 1 (2017)Google Scholar
  6. 6.
    F. Mirante, L. Dias, M. Silva, S.O. Ribeiro, M.C. Corvo, B. Castro, C.M. Granadeiro, S.S. Balula, Catal. Commun. 104, 1 (2018)Google Scholar
  7. 7.
    L.S. Nogueira, S. Ribeiro, C.M. Granadeiro, E. Pereira, G. Feio, L. Cunha-Silva, S.S. Balula, Dalton Trans. 42, 9518 (2014)Google Scholar
  8. 8.
    J. Wang, D. Zhao, K. Li, Energy Fuel 24, 2527 (2010)Google Scholar
  9. 9.
    X. Zhou, J. Li, X. Wang, K. Jin, W. Ma, Fuel Process. Technol. 90, 317 (2009)Google Scholar
  10. 10.
    M.A. Safa, T. Al-Shamary, R. Al-Majren, R. Bouresli, X. Ma, Energy Fuels 31, 7464 (2017)Google Scholar
  11. 11.
    A.D. Bokare, W. Choi, J. Hazard. Mater. 304, 313 (2016)PubMedGoogle Scholar
  12. 12.
    F. Banisharif, M.R. Dehghani, J.M. Campos-Martin, Oxid. Energy Fuels 31, 5419 (2017)Google Scholar
  13. 13.
    M. Craven, D. Xiao, C. Kunstmann-Olsen, E.F. Kozhevnikova, F. Blanc, A. Steiner, I.V. Kozhevnikov, Appl. Catal. B 231, 82 (2018)Google Scholar
  14. 14.
    R.D. Andrei, N. Cambruzzi, M. Bonne, B. Lebeau, V. Hulea, J. Porous Mater. 26, 533 (2019)Google Scholar
  15. 15.
    M. Craven, D. Xiao, C. Kunstmann-Olsen, E.F. Kozhevnikova, F. Blanc, A. Steiner, I.V. Kozhevnikov, Appl. Catal. B 231, 82 (2018)Google Scholar
  16. 16.
    F. Banisharif, M.R. Dehghani, M.C. Capel-Sánchez, J.M. Campos-Martin, Ind. Eng. Chem. Res. 56, 3839 (2017)Google Scholar
  17. 17.
    Y. Shiraishi, K. Tachibana, T. Hirai, I. Komasawa, Ind. Eng. Chem. Res. 41, 4362 (2002)Google Scholar
  18. 18.
    A.D. Giuseppe, M. Crucianelli, F. De Angelis, C. Crestini, R. Saladino, Appl. Catal. B 89, 239 (2009)Google Scholar
  19. 19.
    J.M. Brégeault, Dalton Trans. 0, 3389 (2003)Google Scholar
  20. 20.
    D. Yue, J. Lei, Z. Lina, G. Zhenran, X. Du, J. Li, Catal. Lett. 148, 1100 (2018)Google Scholar
  21. 21.
    B.N. Bhadra, J.Y. Song, N.A. Khan, S.H. Jhung, ACS Appl. Mater. Interfaces 9, 31192 (2017)PubMedGoogle Scholar
  22. 22.
    A.K. Dizaji, H.R. Mortaheb, B. Mokhtarani, Chem. Eng. J. 335, 362 (2018)Google Scholar
  23. 23.
    W. Zhu, B. Dai, P. Wu, Y. Chao, J. Xiong, S. Xun, H. Li, H. Li, ACS Sustain. Chem. Eng. 3, 186 (2015)Google Scholar
  24. 24.
    D. Yue, J. Lei, Y. Peng, J. Li, X. Du, Fuel 2206, 148 (2018)Google Scholar
  25. 25.
    E. Torres-Garcia, A. Galano, G. Rodriguez-Gattorno, J. Catal. 282, 201–208 (2011)Google Scholar
  26. 26.
    M. Sadakane, E. Steckhan, Chem. Rev. 98, 219 (1998)PubMedGoogle Scholar
  27. 27.
    S. Roy, D. Mumbaraddi, A. Jain, S.J. George, S.C. Peter, Inorg. Chem. 57, 590 (2018)PubMedGoogle Scholar
  28. 28.
    M. Wu, Q.Q. Zhao, J. Li, X.L. Su, H.Y. Wu, X.X. Guan, X.C. Zheng, J. Porous Mater. 23, 1329 (2016)Google Scholar
  29. 29.
    N. Narkhede, S. Singh, A. Patel, Green Chem. 17, 89 (2015)Google Scholar
  30. 30.
    J. Yuan, J. Xiong, J. Wang, W. Ding, L. Yang, M. Zhang, W. Zhu, H. Li, J. Porous Mater. 23, 823 (2016)Google Scholar
  31. 31.
    N.C. Coronel, M.J. da Silva, Lacunar. J. Clust. Sci. 29, 195 (2018)Google Scholar
  32. 32.
    M. Li, J. Shen, X. Ge, X. Chen, Appl. Catal. A 206, 161 (2001)Google Scholar
  33. 33.
    M.J. da Silva, L.C. de Andrade, L.R. Natalino, S.O. Ferreira, N.C. Coronel, Catal. Lett. 148, 1202 (2018)Google Scholar
  34. 34.
    N. Narkhede, A. Patel, S. Singh, Dalton Trans. 43, 2512 (2014)PubMedGoogle Scholar
  35. 35.
    S. Pathan, A. Patel, Dalton Trans. 40, 348 (2011)PubMedGoogle Scholar
  36. 36.
    M. Rezaei, A.N. Chermahini, H.A. Dabbagh, J. Environ. Chem. Eng. 5, 3529 (2017)Google Scholar
  37. 37.
    S. Pathan, A. Patel, Appl. Catal. A 459, 59 (2013)Google Scholar
  38. 38.
    T.A.G. Duarte, I.C.M.S. Santos, M.M.Q. Simoes, M. Graca, P.M.S. Neves, A.M.V. Cavaleiro, J.A.S. Cavaleiro, Catal. Lett. 144, 104 (2014)Google Scholar
  39. 39.
    H.M. Kao, P.C. Chang, Y.W. Liao, L.P. Lee, C.H. Chien, Microporous Mesoporous Mater. 114, 352 (2008)Google Scholar
  40. 40.
    C.A. Emeis, J. Catal. 141, 347 (1993)Google Scholar
  41. 41.
    L.F. Ramı´rez, E. Torres, R. Go´mez, V. Gonza´lez, F. Murrieta, Catal. Today 98, 289 (2004)Google Scholar
  42. 42.
    J.L. Garcıa-Gutierrez, G.A. Fuentes, M.E. Hernandez-Teran, P. Garcıa, F. Murrieta-Guevara, F. Jime´nez-Cruz, Appl. Catal. A 334, 366 (2008)Google Scholar
  43. 43.
    Y. Gao, R. Gao, G. Zhang, Y. Zheng, J. Zhao, Fuel 224, 261 (2018)Google Scholar
  44. 44.
    D. Julião, A.C. Gomes, M. Pillinger, R. Valença, J.C. Ribeiro, B. de Castro, I.S. Gonçalves, L.C. Silva, S.S. Balula, Eur. J. Inorg. Chem. 2016, 5114 (2016)Google Scholar
  45. 45.
    Z.E.A. Abdallaa, B. Li, A. Tufail, Colloids Surf. A 341, 86 (2009)Google Scholar
  46. 46.
    M.A. Rezvani, S. Khandan, N. Sabahi, Energy Fuels 31, 5472 (2017)Google Scholar
  47. 47.
    A. Khodadadi Dizaji, B. Mokhtarani, H.R. Mortahe, Fuel 236, 717 (2019)Google Scholar
  48. 48.
    A. Teimouri, M. Mahmoudsalehi, H. Salavati, Int. J Hydrogen Energy 43, 14816 (2018)Google Scholar
  49. 49.
    Z.E.A. Abdallaa, B. Li, Chem. Eng. J. 200–202, 113 (2012)Google Scholar
  50. 50.
    D. Yue, J. Lei, Z. Lina, G. Zhenran, X. Du, J. Li, J. Porous Mater. 26, 133 (2019)Google Scholar
  51. 51.
    D. Yue, J. Lei, Y. Peng, J. Li, X. Du, J. Porous Mater. 25, 727 (2019)Google Scholar
  52. 52.
    A. Moslemi, A.N. Chermahini, J.N. Sarpiri, S. Rezaei, M. Barati, J. Taiwan, Inst. Chem. E 97, 237 (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations