Advertisement

Journal of Porous Materials

, Volume 26, Issue 6, pp 1731–1741 | Cite as

A wide range sensor of a 3D mesoporous silica coated QCM electrodes for the detection of volatile organic compounds

  • Mohamad M. AyadEmail author
  • Nagy L. Torad
  • Islam M. Minisy
  • Raja Izriq
  • El-Zeiny M. Ebeid
Article

Abstract

A quartz crystal microbalance (QCM) electrode coated with high surface area mesoporous silica KIT-6 films was designed as a sensor for the detection of a wide range of volatile organic compounds (VOCs) such as aliphatic alcohols, aliphatic amines, benzene and toluene at room temperature. A thin film of KIT-6 coating on Au-electrode of QCM was prepared by a simple drop-coating approach. The mesoporous silica KIT-6 was characterized with transmission electron microscope (TEM), low-angle X-ray difraction (XRD), Fourier transform infrared spectrocsopy (FT-IR) and N2 sorption isotherm. The frequency shifts (Δf) of the QCM coated with mesoporous silica KIT-6 films were measured as a function of time after injection of different VOCs vapors. Δfs were found to be increased linearly with the injected chemical vapor concentration. The results definitely showed an enhanced detection sensitivity and a fast response of the QCM sensor. The sensor showed an unusual high sensitivity and selectivity for amine compounds and the equilibrium was achieved within few seconds. The adsorption kinetics and relaxation time of methanol and ethanol vapors were carefully studied.

Keywords

Quartz crystal microbalance (QCM) Mesoporous silica KIT-6 film Volatile organic compounds (VOCs) Sensitivity Selectivity Adsorption kinetics and relaxation time 

Notes

References

  1. 1.
    X. Fan, B. Du, Sens. Actuators B 160, 724 (2011)Google Scholar
  2. 2.
    F.I. Khan, A.K. Ghoshal, J. Loss Prev. Process Ind. 13, 527 (2000)Google Scholar
  3. 3.
    H. Lin, M. Jang, K.S. Suslick, J. Am. Chem. Soc. 133, 16786 (2011)PubMedPubMedCentralGoogle Scholar
  4. 4.
    H.K. Hudnell, D.A. Otto, D.E. House, L. Mølhave, Arch. Environ. Health 47, 31 (1992)PubMedGoogle Scholar
  5. 5.
    P. Wolkoff, Int. J. Hyg. Environ. Health 216, 371 (2013)PubMedGoogle Scholar
  6. 6.
    M.L. Boeglin, D. Wessels, D. Henshel, Environ. Res. 100, 242 (2006)PubMedGoogle Scholar
  7. 7.
    H. Guo, X. Chen, Y. Yao, G. Du, H. Li, Sens. Actuators B 155, 519 (2011)Google Scholar
  8. 8.
    D. Sanjuán-Herráez, S. de La Osa, A. Pastor, M. de la Guardia, Microchem. J. 114, 42 (2014)Google Scholar
  9. 9.
    S. Liu, T. Ponrathnam, H. Sun, R. Nagarajan, J. Kumar, Z. Gu, P. Kurup, J. Macromol. Sci. 47, 1172 (2010)Google Scholar
  10. 10.
    J.-S. Kim, H.-W. Yoo, H.O. Choi, H.-T. Jung, Nano Lett. 14, 5941 (2014)PubMedGoogle Scholar
  11. 11.
    Y. Fu, H.O. Finklea, Anal. Chem. 75, 5387 (2003)PubMedGoogle Scholar
  12. 12.
    V. Van Quang, V.N. Hung, V.N. Phan, T.Q. Huy, N. Van Quy, Thin Solid Films 568, 6 (2014)Google Scholar
  13. 13.
    J. Tang, N.L. Torad, R.R. Salunkhe, J.H. Yoon, A. Hossain, M. Shahriar, S.X. Dou, J.H. Kim, T. Kimura, Y. Yamauchi, Chem. Asian J. 9, 3238 (2014)PubMedGoogle Scholar
  14. 14.
    M.M. Ayad, G. El-Hefnawey, N.L. Torad, Sens. Actuators B 134, 887 (2008)Google Scholar
  15. 15.
    M.M. Ayad, N.L. Torad, Sens. Actuators B 147, 481 (2010)Google Scholar
  16. 16.
    A. Bearzotti, A. Macagnano, P. Papa, I. Venditti, E. Zampetti, Sens. Actuators B 240, 1160 (2017)Google Scholar
  17. 17.
    F. Temel, M. Tabakci, Talanta 153, 221 (2016)PubMedGoogle Scholar
  18. 18.
    M.M. Ayad, N.A. Salahuddin, M.O. Alghaysh, Polym. Adv. Technol. 19, 1142 (2008)Google Scholar
  19. 19.
    M.M. Ayad, A. Abu El-Nasr, J. Phys. Chem. C 114, 14377 (2010)Google Scholar
  20. 20.
    M.M. Ayad, N.A. Salahuddin, I.M. Minisy, W.A. Amer, Sens. Actuators B 202, 144 (2014)Google Scholar
  21. 21.
    A. Palaniappan, X. Li, F.E. Tay, J. Li, X. Su, Sens. Actuators B 119, 220 (2006)Google Scholar
  22. 22.
    K.A. Marx, Biomacromol 4, 1099 (2003)Google Scholar
  23. 23.
    G. Sauerbrey, Z. Phys. 155, 206 (1959)Google Scholar
  24. 24.
    M.M. Ayad, G. El-Hefnawey, N.L. Torad, J. Hazard. Mater. 168, 85 (2009)PubMedGoogle Scholar
  25. 25.
    I. Koshets, Z. Kazantseva, Y.M. Shirshov, S. Cherenok, V. Kalchenko, Sens. Actuators B 106, 177 (2005)Google Scholar
  26. 26.
    T.I. Nasution, I. Nainggolan, S.D. Hutagalung, K.R. Ahmad, Z.A. Ahmad, Sens. Actuators B 177, 522 (2013)Google Scholar
  27. 27.
    M.M. Ayad, I.M. Minisy, Prog. Org. Coat. 100, 76 (2016)Google Scholar
  28. 28.
    T. Kimura, N.L. Torad, Y. Yamauchi, J. Mater. Chem. A 2, 8196 (2014)Google Scholar
  29. 29.
    N. Van Quy, T.M. Hung, T.Q. Thong, T.Q. Huy, N.D. Hoa, Curr. Appl. Phys. 13, 1581 (2013)Google Scholar
  30. 30.
    B.P. Bastakoti, N.L. Torad, Y. Yamauchi, ACS Appl, Mater. Interfaces 6, 854 (2013)Google Scholar
  31. 31.
    T.-W. Kim, F. Kleitz, B. Paul, R. Ryoo, J. Am. Chem. Soc. 127, 7601 (2005)Google Scholar
  32. 32.
    K.C.-W. Wu, Y. Yamauchi, J. Mater. Chem. 22, 1251 (2012)Google Scholar
  33. 33.
    K.C.-W. Wu, X. Jiang, Y. Yamauchi, J. Mater. Chem. 21, 8934 (2011)Google Scholar
  34. 34.
    H. Tan, Y. Li, X. Jiang, J. Tang, Z. Wang, H. Qian, P. Mei, V. Malgras, Y. Bando, Y. Yamauchi, Nano Energy 36, 286 (2017)Google Scholar
  35. 35.
    H. Wang, H.Y. Jeong, M. Imura, L. Wang, L. Radhakrishnan, N. Fujita, T. Castle, O. Terasaki, Y. Yamauchi, J. Am. Chem. Soc. 133, 14526 (2011)PubMedGoogle Scholar
  36. 36.
    X. Jiang, N. Suzuki, B.P. Bastakoti, K.C.W. Wu, Y. Yamauchi, Chem. Asian J. 7, 1713 (2012)PubMedGoogle Scholar
  37. 37.
    J.L. Vivero-Escoto, Y.-D. Chiang, K.C. Wu, Y. Yamauchi, Sci. Technol. Adv. Mater. 13, 013003 (2012)PubMedPubMedCentralGoogle Scholar
  38. 38.
    H.-W. Chen, C.-Y. Hong, C.-W. Kung, C.-Y. Mou, K.C.-W. Wu, K.-C. Ho, J. Power Sources 288, 221 (2015)Google Scholar
  39. 39.
    X. Xu, B. Tian, J. Kong, S. Zhang, B. Liu, D. Zhao, Adv. Mater. 15, 1932 (2003)Google Scholar
  40. 40.
    A. Ivanova, D. Fattakhova-Rohlfing, B.E. Kayaalp, J. Rathouský, T. Bein, J. Am. Chem. Soc. 136, 5930 (2014)PubMedGoogle Scholar
  41. 41.
    C.-P. Liang, Y. Yamauchi, C.-H. Liu, K.C.-W. Wu, Dalton Trans. 42, 8704 (2013)PubMedGoogle Scholar
  42. 42.
    Z. Wu, D. Zhao, Chem. Commun. 47, 3332 (2011)Google Scholar
  43. 43.
    J. Bassil, A. AlBarazi, P. Da Costa, M. Boutros, Catal. Today 176, 36 (2011)Google Scholar
  44. 44.
    M.M. Ayad, N.A. Salahuddin, A.A. El-Nasr, N.L. Torad, Microporous Mesoporous Mater. 229, 166 (2016)Google Scholar
  45. 45.
    M.M. Ayad, N.A. Salahuddin, N.L. Torad, A.A. El-Nasr, RSC Adv. 6, 57929 (2016)Google Scholar
  46. 46.
    Y. Zhu, H. Li, Q. Zheng, J. Xu, X. Li, Langmuir 28, 7843 (2012)PubMedGoogle Scholar
  47. 47.
    P. Xu, H. Yu, X. Li, Anal. Chem. 83, 3448 (2011)PubMedGoogle Scholar
  48. 48.
    T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn 63, 988 (1990)Google Scholar
  49. 49.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)Google Scholar
  50. 50.
    F. Kleitz, S.H. Choi, R. Ryoo, Chem. Commun. 2136 (2003)Google Scholar
  51. 51.
    W. Wang, R. Qi, W. Shan, X. Wang, Q. Jia, J. Zhao, C. Zhang, H. Ru, Microporous Mesoporous Mater. 194, 167 (2014)Google Scholar
  52. 52.
    S. Shariati, M. Khabazipour, F. Safa, J. Porous Mater. 24, 129 (2017)Google Scholar
  53. 53.
    M. Sojoudi, S. Shariati, M. Khabazipour, Anal. Bioanal. Chem. Res. 3, 287 (2016)Google Scholar
  54. 54.
    L. Zhu, X. Shi, L. Song, Y. Sun, S. Chen, W. Wu, J. Radioanal. Nucl. Chem. 308, 381 (2016)Google Scholar
  55. 55.
    Z. Ezzeddine, I. Batonneau-Gener, Y. Pouilloux, H. Hamad, Z. Saad, V. Kazpard, Microporous Mesoporous Mater. 212, 125 (2015)Google Scholar
  56. 56.
    N. Bensacia, I. Fechete, S. Moulay, O. Hulea, A. Boos, F. Garin, C. R. Chim. 17, 869 (2014)Google Scholar
  57. 57.
    C. Zamani, X. Illa, S. Abdollahzadeh-Ghom, J. Morante, A.R. Rodriguez, Nanoscale Res. Lett. 4, 1303 (2009)PubMedPubMedCentralGoogle Scholar
  58. 58.
    H. Zhao, S. Liu, R. Wang, T. Zhang, Mater. Lett. 147, 54 (2015)Google Scholar
  59. 59.
    X. He, W. Geng, B. Zhang, L. Jia, L. Duan, Q. Zhang, RSC Adv. 6, 38391 (2016)Google Scholar
  60. 60.
    Y.-Q. Dou, Y. Zhai, F. Zeng, X.-X. Liu, B. Tu, D. Zhao, J. Colloid Interface Sci. 341, 353 (2010)PubMedGoogle Scholar
  61. 61.
    M. Boutamine, A. Bellel, S. Sahli, Y. Segui, P. Raynaud, Thin Solid Films 552, 196 (2014)Google Scholar
  62. 62.
    N.L. Torad, R. Azriq, M.M. Ayad, J. Nanosci. Nanotechnol. 19, 770 (2019)PubMedGoogle Scholar
  63. 63.
    M.M. Ayad, N. Salahuddin, I.M. Minisy, Des. Monomers Polym. 17, 795 (2014)Google Scholar
  64. 64.
    R.S. Mikhail, T. El-Akkad, J. Colloid Interface Sci. 51, 260 (1975)Google Scholar
  65. 65.
    C.H. Rochester, G.H. Yong, J. Chem. Soc. Faraday Trans. 1 F 76, 1158 (1980)Google Scholar
  66. 66.
    S.C. Ringwald, J.E. Pemberton, Environ. Sci. Technol. 34, 259 (2000)Google Scholar
  67. 67.
    K. Kosuge, S. Kubo, N. Kikukawa, M. Takemori, Langmuir 23, 3095 (2007)PubMedGoogle Scholar
  68. 68.
    H.-Y. Lian, Y.H. Liang, Y. Yamauchi, K.C.-W. Wu, J. Phys. Chem. C 115, 6581 (2011)Google Scholar
  69. 69.
    S. Okur, M. Kuş, F. Özel, M. Yılmaz, Sens. Actuators B 145, 93 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohamad M. Ayad
    • 1
    • 2
    Email author
  • Nagy L. Torad
    • 1
  • Islam M. Minisy
    • 1
  • Raja Izriq
    • 1
  • El-Zeiny M. Ebeid
    • 1
  1. 1.Chemistry Department, Faculty of ScienceTanta UniversityTantaEgypt
  2. 2.Institute of Basic and Applied Sciences (BAS)Egypt-Japan University of Science and Technology (E-JUST)New Borg El-Arab City, AlexandriaEgypt

Personalised recommendations