Journal of Porous Materials

, Volume 26, Issue 6, pp 1639–1648 | Cite as

The preparation and photocatalytic activities of Z-scheme pillared composites composed of Zr-EDTA and 2D titanate nanosheets

  • Dongya SunEmail author
  • Zhenyong Lin
  • Shengfu Xiao
  • Qinwen Yin
  • Liwen HeEmail author


To fabricate mesoporous photocatalysts with delaminated structures, the exfoliated and layered titanate in an aqueous solution was reassembled in the presence of a Zr-EDTA complex suspension by using an exfoliation-restacking route. Powder X-ray diffraction and HR-TEM clearly revealed that the Zr-EDTA complexes were intercalated into the interlayer of titanate sheets, and the present nanocomposite possessed an enhanced specific surface area (~ 193 m2 g−1) with a diameter of 4.32 nm. The XPS and UV–Vis spectra showed interaction between the titanate nanosheets and the guest complex in the pillared system, where in the guest accepted and transported photo-generated carriers, and titanate nanosheets provided active reactive sites. The result nanohybrids exhibited excellent photocatalytic activity in the degradation of methylene blue (MB) under visible-light irradiation, as attributed to the expansion of the surface area, the narrowing of the band-gap, and an ohmic contact of Z-scheme between the guest and the host.


Intercalated materials Titanate nanosheets Zr-EDTA Z-scheme Photocatalyst 



This work was supported by the National Natural Science Foundation of China (21103054, 21003055, 50872037), the Educational research projects for young and middle-aged teachers in Fujian (JT180422), the Open fund of Fujian Provincial Key Laboratory of Functional Materials and Applications (608160030215) and the Program for Innovative Research Team in Science and Technology in Fujian Province University.


  1. 1.
    A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735–758 (1995)Google Scholar
  2. 2.
    K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269–8285 (2005)Google Scholar
  3. 3.
    A. Kshirsagar, T. Khanna, P. Khanna, V. Dhanwe, P.K. Khanna, Vacuum 146, 633–640 (2017)Google Scholar
  4. 4.
    Y. Xie, L. Mo, D. Su, M.F. Woldekidan, S.P. Wu, J. Hazard. Mater. 280, 260–268 (2007)Google Scholar
  5. 5.
    Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, J. Am. Chem. Soc. 133, 10878–10884 (2011)PubMedGoogle Scholar
  6. 6.
    H.X. Yang, B.Q. Shan, L. Zhang, RSC Adv. 4, 61226–61231 (2014)Google Scholar
  7. 7.
    S.M. Lam, J.C. Sin, I. Satoshi, A.Z. Abdullah, A.R. Mohamed, Appl. Catal. A 471, 126–135 (2014)Google Scholar
  8. 8.
    L. He, H. Liu, B. Lv, P. Liu, B. Lin, Vacuum 138, 64–69 (2017)Google Scholar
  9. 9.
    X. Li, B. Lin, B. Xu, Z. Chen, Q. Wang, J. Kuang, H. Zhu, J. Mater. Chem. 20, 3924–3931 (2010)Google Scholar
  10. 10.
    L. Zhang, B.Q. Shan, H.X. Yang, D.S. Wu, R. Zhu, J.H. Nie, R. Cao, RSC Adv. 5, 23556–23562 (2015)Google Scholar
  11. 11.
    S. Li, D. Chen, F. Zheng, Y. Wu, S. Jiang, Adv. Funct. Mater. 24, 7133–7138 (2014)Google Scholar
  12. 12.
    F. Zou, K. Bozhilov, R. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, P. Feng, Angew. Chem. 51, 6327–6330 (2012)Google Scholar
  13. 13.
    H.X. Yang, X.Y. Liu, S.N. Sun, Y. Nie, H.P. Wu, T.Y. Yang, S.J. Zheng, S.L. Lin, Mater. Res. Bull. 78, 112–118 (2016)Google Scholar
  14. 14.
    P. Gao, Z. Liu, D. Sun, J. Mater. Chem. A 1, 14262–14269 (2013)Google Scholar
  15. 15.
    H. Khojasteh, M. Salavati-Niasari, S. Mortazavi-Derazkola, J. Mater. Sci.:Mater. Electron. 27, 3599–3607 (2016)Google Scholar
  16. 16.
    Y. Li, Y. Hu, S. Peng, G. Lu, S. Li, J. Phys. Chem. C 113, 9352–9358 (2009)Google Scholar
  17. 17.
    K. Takashi, M. Sachiyo, S. Hiroki, H. Yamashita, Angew. Chem. Int. Ed. 52, 916–919 (2013)Google Scholar
  18. 18.
    X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503–6570 (2010)PubMedGoogle Scholar
  19. 19.
    T.W. Kim, S.G. Hur, S.J. Hwang, H. Park, W. Choi, J.H. Choy, Adv. Funct. Mater. 17, 307–314 (2007)Google Scholar
  20. 20.
    Q.Q. Wang, B.Z. Lin, B.H. Xu, X.L. Li, Z.J. Chen, X.T. Pian, Microporous Mesoporous Mater. 130, 344–351 (2010)Google Scholar
  21. 21.
    J.H. Choy, H.C. Lee, H. Jung, S.J. Hwang, J. Mater. Chem. 11, 2232–2234 (2001)Google Scholar
  22. 22.
    T. Sasaki, A.F. Izumi, M. Watanabe, Chem. Mater. 8, 777–782 (1996)Google Scholar
  23. 23.
    M.R. Allen, A. Thiibert, E.M. Sabio, N.D. Browning, D.S. Larsen, F.E. Osterloh, Chem. Mater. 22, 1220–1227 (2010)Google Scholar
  24. 24.
    H. Zhao, X. Ding, B. Zhang, Y. Li, C. Wang, Sci. Bull. 62, 602–609 (2017)Google Scholar
  25. 25.
    Y. Liu, R. Wang, Z. Yang, H. Du, Y. Jiang, C. Shen, K. Liang, A. Xu, Chin. J. Catal. 36, 2135–2144 (2015)Google Scholar
  26. 26.
    S. Sun, T. Hisatomi, Q. Wang, S. Chen, G. Ma, J. Liu, S. Landy, T. Minegishi, M. Katayama, K. Domen, ACS Catal. 8, 1690–1696 (2018)Google Scholar
  27. 27.
    B.Z. Lin, B.H. Xu, L.W. He, X.R. Fan, H. Qu, Microporous Mesoporous Mater. 172, 105–111 (2013)Google Scholar
  28. 28.
    E.N.K. Glover, S.G. Ellington, G. Sankar, R.G. Palgrave, J. Mater. Chem. A 4, 6946–6954 (2016)Google Scholar
  29. 29.
    B.Z. Lin, Y. Zhou, L.W. He, W.W. Yang, Y.L. Chen, B.F. Gao, J. Phys. Chem. Solids 79, 66–71 (2015)Google Scholar
  30. 30.
    X.L. Li, B.Z. Lin, B.H. Xu, Z.J. Chen, Q.Q. Wang, J.D. Kuang, H. Zhu, J. Mater. Chem. 20, 3924–3931 (2010)Google Scholar
  31. 31.
    Z.J. Chen, B.Z. Lin, Y.L. Chen, K.Z. Zhang, L. Bai, H. Zhu, J. Phys. Chem. Solids 71, 841–847 (2010)Google Scholar
  32. 32.
    E. Lee, J.Y. Hong, H. Kang, J. Jang, J. Hazard. Mater. 219–220, 13–18 (2012)PubMedGoogle Scholar
  33. 33.
    J. Fang, Z. Zheng, Z. Xu, S. Zheng, J. Hazard. Mater. 164, 1250–1256 (2008)Google Scholar
  34. 34.
    L.W. He, D.Y. Sun, B.Z. Lin, Chin. J. Inorg. Chem. 30, 2489–2497 (2014)Google Scholar
  35. 35.
    L.W. He, B.Z. Lin, G.H. Zhang, Q.R. Yao, Chem. J. Chin. Univ.-Chin. Ed. 36, 1984–1989 (2015)Google Scholar
  36. 36.
    T. Sasaki, M. Watanabe, H. Hashizume, A.H. Yamada, H. Nakazawa, J. Am. Chem. Soc. 118, 8329–8335 (1996)Google Scholar
  37. 37.
    D.Y. Sun, B.Z. Lin, B.H. Xu, C. Ding, Y.L. Chen, J. Porous Mater. 15, 245–251 (2008)Google Scholar
  38. 38.
    T. Sasaki, Y. Komatsu, Y. Fujiki, J. Chem. Soc. Chem. Commun. 12, 817–818 (1991)Google Scholar
  39. 39.
    Z.P. Deng, S. Gao, L.H. Huo, H. Zhao, Chem. J. Chin. Univ. 23, 555–557 (2007)Google Scholar
  40. 40.
    T. Allen, Powder Sampling & Particle Size Determination, vol. 1 (Elsevier, Amsterdam, 2003), pp. 1–55Google Scholar
  41. 41.
    A.A. Ismail, D.W. Bahnemann, J. Mater. Chem. 21, 11686–11707 (2011)Google Scholar
  42. 42.
    L. Deng, Y. Chen, M. Yao, S. Wang, B. Zhu, W. Huang, S. Zhang, J. Sol-Gel Sci. Technol. 53, 535–541 (2010)Google Scholar
  43. 43.
    C.O.A. Olsson, D. Landolt, Corros. Sci. 46, 213–224 (2004)Google Scholar
  44. 44.
    K. Li, D. Xue, J. Phys. Chem. A 110, 11332–11337 (2006)PubMedGoogle Scholar
  45. 45.
    H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.H. Choi, Y.H. Lee, Adv. Funct. Mater. 19, 1987–1992 (2009)Google Scholar
  46. 46.
    P. Kirshnan, J.D. Alexander, B.J. Butler, J.W. Hummel, Soil Sci. Soc. Am. J. 44, 1282–1285 (1980)Google Scholar
  47. 47.
    A. Márquezherrera, V. Ovandomedina, B. Castilloreyes, M. Zapatatorres, M. Meléndezlira, Materials 9, 30–43 (2016)Google Scholar
  48. 48.
    Y.I. Kim, S.J. Atherton, E.S. Brigham, T.E. Mallouk, J. Phys. Chem. 97, 11802–11810 (1993)Google Scholar
  49. 49.
    J. Fu, G.N. Li, F.N. Xi, X.P. Dong, Chem. Eng. J. 180, 330–336 (2012)Google Scholar
  50. 50.
    Z.J. Chen, B.Z. Lin, B.H. Xu, X.L. Li, Q.Q. Wang, K.Z. Zhang, M.C. Zhu, J. Porous Mater. 18, 185–193 (2011)Google Scholar
  51. 51.
    Y. Li, X. Feng, Z. Lu, H. Yin, F. Liu, Q. Xiang, J. Colloid, Interface Sci. 513, 866–876 (2017)Google Scholar
  52. 52.
    K. Maeda, ACS Catal. 3, 1486–1503 (2013)Google Scholar
  53. 53.
    P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 26, 4920–4935 (2014)PubMedGoogle Scholar
  54. 54.
    K. Byun, H.J. Chung, J. Lee, H. Yang, H.J. Song, J. Heo, D.H. Seo, S. Park, S.W. Hwang, I. Yoo, K. Kim, Nano Lett. 13, 4001–4005 (2013)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and EngineeringXiamen University of TechnologyXiamenPeople’s Republic of China
  2. 2.Fujian Provincial Laboratory of Functional Materials, College of Materials Science and EngineeringHuaqiao UniversityXiamenPeople’s Republic of China

Personalised recommendations