Journal of Porous Materials

, Volume 26, Issue 6, pp 1573–1579 | Cite as

Stable fluorinated 3D isoreticular nanotubular triazole MOFs: synthesis, characterization and CO2 separation

  • Sha Chen
  • Da-Wei Wang
  • Su-Juan WangEmail author
  • Ji-Jun JiangEmail author
  • Cheng-Yong Su


Much of the efficient efforts have been largely devoted to enhancing the CO2 binding affinity in MOFs. In this paper, three isoreticular triazolate frameworks with the formula LIFM-1(TAZ).solvents, LIFM-1(MTAZ).solvents and LIFM-1(AmTAZ).solvents (TAZ = 1,2,4-triazole; MTAZ = 3-methyl-1H-1,2,4-triazole; AmTAZ = 3-amino-1H-1,2,4-triazole) have been prepared by using divalent zinc ions with the ligands of TAZ and its amino and methyl substituted derivatives for comparison of their sorption properties. High thermal stability and phase purity of the three MOFs were verified by thermogravimetric analysis and powder X-ray diffraction, respectively. Single component adsorption isotherms of N2, CO2 and H2 were also measured experimentally. Virial method shows that the porous frameworks of LIFM-1(AmTAZ) display high selectivity of CO2 over N2.


Functionalized porous MOFs 3D isoreticular triazole MOFs CO2 separation 



This work was supported by NSFC (21821003, 21890380, 21890382, 21801252, 21720102007, 21771197), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01C161) and STP Project of Guangzhou (201607010378).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10934_2019_755_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1988 kb)


  1. 1.
    Mauna Lao Observatory, Scripps CO2 Program (2015). Accessed Apr 2015
  2. 2.
    R.-R. Ang, Sin L. Tin, S.-T. Bee, T. Tee, A.A.H. Kadhum, A.R. Rahmat, B.A. Wasmi, A review of copolymerization of green house gas carbon dioxide and oxiranes to produce polycarbonate. J. Clean. Prod. 102, 1–17 (2015)Google Scholar
  3. 3.
    C. Mandil, Prospects for Capture and Storage (International Energy Agency and Energy Technology Analysis. IEA Publications, Paris Cedex, 2004)Google Scholar
  4. 4.
    W. Lu, Z. Wei, Z.Y. Gu, T.F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle 3rd, M. Bosch, H.C. Zhou, Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014)PubMedGoogle Scholar
  5. 5.
    Q.L. Zhu, Q. Xu, Metal–organic framework composites. Chem. Soc. Rev. 43, 5468–5512 (2014)PubMedGoogle Scholar
  6. 6.
    X. Zhao, B. Xiao, A.J. Fletcher, K.M. Thomas, D. Bradshaw, M.J. Rosseinsky, Hysteretic adsorption and desorption of hydrogen by nanoporous metal–organic frameworks. Science 306, 1012–1015 (2004)PubMedGoogle Scholar
  7. 7.
    H.X. Zhang, M. Liu, T. Wen, J. Zhang, Synthetic design of functional boron imidazolate frameworks. Coord. Chem. Rev. 307, 255–266 (2016)Google Scholar
  8. 8.
    A. Yamasaki, An overview of CO2 mitigation options for global warming—emphasizing CO2 sequestration options. J. Chem. Eng. Jpn. 36, 361–375 (2003)Google Scholar
  9. 9.
    J.T. Yeh, K.P. Resnik, K. Rygle, H.W. Pennline, Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Process. Technol. 86, 1533–1546 (2005)Google Scholar
  10. 10.
    X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463–1469 (2002)Google Scholar
  11. 11.
    W.W. Zhan, Q. Kuang, J.Z. Zhou, X.J. Kong, Z.X. Xie, L.S. Zheng, Semiconductor@metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 135, 1926–1933 (2013)PubMedGoogle Scholar
  12. 12.
    L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)PubMedGoogle Scholar
  13. 13.
    P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre, Metal-organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012)PubMedGoogle Scholar
  14. 14.
    T. Yamada, K. Otsubo, R. Makiura, H. Kitagawa, Designer coordination polymers: dimensional crossover architectures and proton conduction. Chem. Soc. Rev. 42, 6655–6669 (2013)PubMedGoogle Scholar
  15. 15.
    H.C. Zhou, S. Kitagawa, Metal-organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014)PubMedGoogle Scholar
  16. 16.
    X. Luo, Q. Zhou, S. Du, J. Li, L. Zhang, K. Lin, H. Li, B. Chen, T. Wu, D. Chen, M. Chang, Y. Liu, One-dimensional porous hybrid structure of Mo2C-CoP encapsulated in N-doped carbon derived from MOF as an efficient electrocatalyst for hydrogen evolution reaction over the entire pH range. ACS Appl. Mater. Interfaces 10, 42335–42347 (2018)PubMedGoogle Scholar
  17. 17.
    J. Sheng, L. Wang, L. Deng, M. Zhang, H. He, K. Zeng, F. Tang, Y.N. Liu, MOF-Templated fabrication of hollow Co4N@N-doped carbon porous nanocages with superior catalytic activity. ACS Appl. Mater. Interfaces 10, 7191–7200 (2018)PubMedGoogle Scholar
  18. 18.
    Y. Xu, L. Lin, M. Xiao, S. Wang, A.T. Smith, L. Sun, Y. Meng, Synthesis and properties of CO2-based plastics: environmentally-friendly, energy-saving and biomedical polymeric materials. Prog. Polym. Sci. 80, 163–182 (2018)Google Scholar
  19. 19.
    M. Yao, X. Zhao, J. Zhang, W. Tan, J. Luo, J. Dong, Q. Zhang, Flexible all-solid-state supercapacitors of polyaniline nanowire arrays deposited on electrospun carbon nanofibers decorated with MOFs. Nanotechnology 30, 085404 (2019)PubMedGoogle Scholar
  20. 20.
    Y.S. Bae, O.K. Farha, A.M. Spokoyny, C.A. Mirkin, J.T. Hupp, R.Q. Snurr, Carborane-based metal-organic frameworks as highly selective sorbents for CO2 over methane. Chem. Commun. 44, 4135–4137 (2008)Google Scholar
  21. 21.
    Y. Zhao, H. Wu, T.J. Emge, Q. Gong, N. Nijem, Y.J. Chabal, L. Kong, D.C. Langreth, H. Liu, H. Zeng, J. Li, Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal–organic framework structures. Chemistry 17, 5101–5109 (2011)PubMedGoogle Scholar
  22. 22.
    B. Zheng, J. Bai, J. Duan, L. Wojtas, M.J. Zaworotko, Enhanced CO2 binding affinity of a high-uptake rht-type metal–organic framework decorated with acylamide groups. J. Am. Chem. Soc. 133, 748–751 (2011)PubMedGoogle Scholar
  23. 23.
    D. Zhao, D.J. Timmons, D. Yuan, H.C. Zhou, Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc. Chem. Res. 44, 123–133 (2011)PubMedGoogle Scholar
  24. 24.
    T. Panda, P. Pachfule, Y. Chen, J. Jiang, R. Banerjee, Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. Chem. Commun. 47, 2011–2013 (2011)Google Scholar
  25. 25.
    J. An, N.L. Rosi, Tuning MOF CO2 adsorption properties via cation exchange. J. Am. Chem. Soc. 132, 5578–5579 (2010)PubMedGoogle Scholar
  26. 26.
    T.M. McDonald, D.M. D’Alessandro, R. Krishna, J.R. Long, Enhanced carbon dioxide capture upon incorporation of N, N′-dimethylethylenediamine in the metal–organic framework CuBTTri. Chem. Sci. 2, 2022–2028 (2011)Google Scholar
  27. 27.
    S. Choi, T. Watanabe, T.H. Bae, D.S. Sholl, C.W. Jones, Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases. J. Phys. Chem. Lett. 3, 1136–1141 (2012)PubMedGoogle Scholar
  28. 28.
    X. Si, C. Jiao, F. Li, J. Zhang, S. Wang, S. Liu, Z. Li, L. Sun, F. Xu, Z. Gabelica, C. Schick, High and selective CO2 uptake, H2 storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1. Energy Environ. Sci. 4, 4522–4527 (2011)Google Scholar
  29. 29.
    L. Wu, M. Xue, S.-L. Qiu, G. Chaplais, A. Simon-Masseron, J. Patarin, Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy. Microporous Mesoporous Mater. 157, 75–81 (2012)Google Scholar
  30. 30.
    J.S. Qin, D.Y. Du, W.L. Li, J.P. Zhang, S.L. Li, Z.M. Su, X.L. Wang, Q. Xu, K.Z. Shao, Y.Q. Lan, N-rich zeolite-like metal–organic framework with sodalite topology: high CO2 uptake, selective gas adsorption and efficient drug delivery. Chem. Sci. 3, 2114–2118 (2012)Google Scholar
  31. 31.
    S. Couck, J.F.M.D. Denayer, G.V. Baron, T. Rémy, J. Gascon, F. Kapteijn, An amine-functionalized MIL-53 metal–organic framework with large separation power for CO2 and CH4. J. Am. Chem. Soc. 131, 6326–6327 (2009)PubMedGoogle Scholar
  32. 32.
    A. Demessence, D.M. D’Alessandro, M.L. Foo, J.R. Long, Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 131, 8784–8786 (2009)PubMedGoogle Scholar
  33. 33.
    Y. Cao, H. Zhang, F. Song, T. Huang, J. Ji, Q. Zhong, W. Chu, Q. Xu, UiO-66-NH2/GO composite: synthesis, characterization and CO2 adsorption performance. Materials 11, 589–603 (2018)PubMedCentralGoogle Scholar
  34. 34.
    U. Junghans, M. Kobalz, O. Erhart, H. Preissler, J. Lincke, J. Mollmer, H. Krautscheid, R. Glaser, A series of robust copper-based triazolyl isophthalate MOFs: impact of linker functionalization on gas sorption and catalytic activity dagger. Materials 10, 338–354 (2017)PubMedCentralGoogle Scholar
  35. 35.
    D. Shakarova, A. Ojuva, L. Bergstrom, F. Akhtar, Methylcellulose-directed synthesis of nanocrystalline zeolite NaA with high CO2 uptake. Materials 7, 5507–5519 (2014)PubMedPubMedCentralGoogle Scholar
  36. 36.
    M. Alhamami, H. Doan, C.H. Cheng, A review on breathing behaviors of metal–organic-frameworks (MOFs) for gas adsorption. Materials. 7, 3198–3250 (2014)PubMedPubMedCentralGoogle Scholar
  37. 37.
    C. Zlotea, D. Phanon, M. Mazaj, D. Heurtaux, V. Guillerm, C. Serre, P. Horcajada, T. Devic, E. Magnier, F. Cuevas, G. Ferey, P.L. Llewellyn, M. Latroche, Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs. Dalton Trans. 40, 4879–4881 (2011)Google Scholar
  38. 38.
    B. Arstad, H. Fjellvåg, K.O. Kongshaug, O. Swang, R. Blom, Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14, 755–762 (2008)Google Scholar
  39. 39.
    T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B. Moulin, D. Heurtaux, G. Clet, A. Vimont, J.M. Greneche, B. Le Ouay, F. Moreau, E. Magnier, Y. Filinchuk, J. Marrot, J.C. Lavalley, M. Daturi, G. Ferey, Functionalization in flexible porous solids: effects on the pore opening and the host–guest interactions. J. Am. Chem. Soc. 132, 1127–1136 (2010)PubMedGoogle Scholar
  40. 40.
    V. Colombo, C. Montoro, A. Maspero, G. Palmisano, N. Masciocchi, S. Galli, E. Barea, J.A. Navarro, Tuning the adsorption properties of isoreticular pyrazolate-based metal-organic frameworks through ligand modification. J. Am. Chem. Soc. 134, 12830–12843 (2012)PubMedGoogle Scholar
  41. 41.
    R. Vaidhyanathan, S.S. Iremonger, G.K. Shimizu, P.G. Boyd, S. Alavi, T.K. Woo, Competition and cooperativity in carbon dioxide sorption by amine-functionalized metal–organic frameworks. Angew Chem. Int. Ed. Eng. 51, 1826–1829 (2012)Google Scholar
  42. 42.
    J.B. Lin, J.P. Zhang, X.M. Chen, Nonclassical active site for enhanced gas sorption in porous coordination polymer. J. Am. Chem. Soc. 132, 6654–6656 (2010)PubMedGoogle Scholar
  43. 43.
    P. Cui, Y.G. Ma, H.H. Li, B. Zhao, J.R. Li, P. Cheng, P.B. Balbuena, H.C. Zhou, Multipoint interactions enhanced CO2 uptake: a zeolite-like zinc–tetrazole framework with 24-nuclear zinc cages. J. Am. Chem. Soc. 134, 18892–18895 (2012)PubMedGoogle Scholar
  44. 44.
    Y. Xiong, Y.Z. Fan, R. Yang, S. Chen, M. Pan, J.J. Jiang, C.Y. Su, Amide and N-oxide functionalization of T-shaped ligands for isoreticular MOFs with giant enhancements in CO2 separation. Chem. Commun. 50, 14631–14634 (2014)Google Scholar
  45. 45.
    W. Zhou, H. Wu, T. Yildirim, Enhanced H2 adsorption in isostructural metal–organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J. Am. Chem. Soc. 130, 15268–15269 (2008)PubMedGoogle Scholar
  46. 46.
    P.D.C. Dietzel, V. Besikiotis, R. Blom, Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J. Mater. Chem. 19, 7362–7370 (2009)Google Scholar
  47. 47.
    Y.-S. Bae, B.G. Hauser, O.K. Farha, J.T. Hupp, R.Q. Snurr, Enhancement of CO2/CH4 selectivity in metal–organic frameworks containing lithium cations. Microporous Mesoporous Mater. 141, 231–235 (2011)Google Scholar
  48. 48.
    R. Babarao, J.W. Jiang, Cation characterization and CO2 capture in Li + -exchanged metal–organic frameworks: from first-principles modeling to molecular simulation. Eng. Chem. Res. 50, 62–68 (2010)Google Scholar
  49. 49.
    C. Chen, J. Kim, D.-A. Yang, W.-S. Ahn, Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: structure and ion-exchange effect. Chem. Eng. J. 168, 1134–1139 (2011)Google Scholar
  50. 50.
    S. Chen, J. Zhang, T. Wu, P. Feng, X. Bu, Multiroute synthesis of porous anionic frameworks and size-tunable extraframework organic cation-controlled gas sorption properties. J. Am. Chem. Soc. 131, 16027–16029 (2009)PubMedGoogle Scholar
  51. 51.
    Y.F. Chen, A. Nalaparaju, M. Eddaoudi, J.W. Jiang, CO2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: a molecular simulation study. Langmuir 28, 3903–3910 (2012)PubMedGoogle Scholar
  52. 52.
    H. Wu, R.S. Reali, D.A. Smith, M.C. Trachtenberg, J. Li, Highly selective CO2 capture by a flexible microporous metal–organic framework (MMOF) material. Chemistry 16, 13951–13954 (2010)PubMedGoogle Scholar
  53. 53.
    J. Zhang, H. Wu, T.J. Emge, J. Li, A flexible MMOF exhibiting high selectivity for CO2 over N2, CH2 and other small gases. Chem. Commun. 46, 9152–9154 (2010)Google Scholar
  54. 54.
    B. Chen, S. Ma, F. Zapata, F.R. Fronczek, E.B. Lobkovsky, H.C. Zhou, Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules. Inorg. Chem. 46, 1233–1236 (2007)PubMedGoogle Scholar
  55. 55.
    J.L. Rowsell, O.M. Yaghi, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006)PubMedGoogle Scholar
  56. 56.
    J. Lee, J. Li, J. Jagiello, Gas sorption properties of microporous metal organic frameworks. J. Solid State Chem. 178, 2527–2532 (2005)Google Scholar
  57. 57.
    C. Montoro, E. García, S. Calero, M.A. Pérez-Fernández, A.L. López, E. Barea, J.A.R. Navarro, Functionalisation of MOF open metal sites with pendant amines for CO2 capture. J. Mater. Chem. 22, 10155–10158 (2012)Google Scholar
  58. 58.
    T.M. McDonald, W.R. Lee, J.A. Mason, B.M. Wiers, C.S. Hong, J.R. Long, Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012)PubMedGoogle Scholar
  59. 59.
    C.Y. Su, A.M. Goforth, M.D. Smith, P.J. Pellechia, H.C. zur Loye, Exceptionally stable, hollow tubular metal-organic architectures: synthesis, characterization, and solid-state transformation study. J Am Chem Soc. 126, 3576–3586 (2004)PubMedGoogle Scholar
  60. 60.
    A.M. Goforth, C.-Y. Su, R. Hipp, R.B. Macquart, M.D. Smith, H.-C. zur Loye, Connecting small ligands to generate large tubular metal-organic architectures. J. Solid State Chem. 178, 2511–2518 (2005)Google Scholar
  61. 61.
    A.X. Zhu, J.B. Lin, J.P. Zhang, X.M. Chen, Isomeric zinc(II) triazolate frameworks with 3-connected networks: syntheses, structures, and sorption properties. Inorg. Chem. 48, 3882–3889 (2009)PubMedGoogle Scholar
  62. 62.
    D. Saha, Z. Bao, F. Jia, S. Deng, Adsorption of CO2, CH2, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ. Sci. Technol. 44, 1820–1826 (2010)PubMedGoogle Scholar
  63. 63.
    R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O’Keeffe, O.M. Yaghi, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131, 3875–3877 (2009)PubMedGoogle Scholar
  64. 64.
    T. Qin, J. Gong, J. Ma, X. Wang, Y. Wang, Y. Xu, X. Shen, D. Zhu, A 3D MOF showing unprecedented solvent-induced single-crystal-to-single-crystal transformation and excellent CO2 adsorption selectivity at room temperature. Chem. Commun. 50, 15886–15889 (2014)Google Scholar
  65. 65.
    P. Nugent, B. Youssef, S.D. Burd, A.J. Cairns, R. Luebke, K. Forrest, T. Pham, S.-Q. Ma, B. Space, L. Wojitas, M. Eddaoudi, M.J. Zaworotko, Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013)PubMedGoogle Scholar
  66. 66.
    Q.-Y. Yang, P. Lama, S. Sen, M. Lusi, K.-J. Chen, W.-Y. Gao, M. Shivanna, T. Pham, Nobuhiko Hosono, S. Kusaka, J.J. Perry IV, S.-Q. Ma, B. Space, L. Barbour, S. Kitagawa, M.J. Zaworotko, Reversible switching between highly porous and nonporous phases of an interpenetrated diamondoid coordination network that exhibits gate-opening at methane storage pressures. Angew Chem. Int. Ed. Eng. 57, 5684–5689 (2018)Google Scholar
  67. 67.
    K. Adil, Y. Belmabkhout, R.S. Pillai, A. Cadiau, P. Bhatt, A.H. Assen, G. Maurin, M. Eddaoudi, Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402–3430 (2017)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of ChemistrySun Yat-Sen UniversityGuangzhouChina
  2. 2.Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, School of Materials Science and EngineeringCentral South University of Forestry and TechnologyChangshaChina

Personalised recommendations