Advertisement

Journal of Porous Materials

, Volume 26, Issue 6, pp 1559–1571 | Cite as

Effect of various synthesis parameters on styrene–divinylbenzene copolymer properties

  • Vasu Chaudhary
  • Sweta SharmaEmail author
Article
  • 117 Downloads

Abstract

Suspension polymerization technique was used to synthesize porous polystyrene polymer cross-linked with divinylbenzene. The effects of various synthesis parameters (amount of initiator, cross-linker and diluent, type of diluent and agitation speed) were evaluated for average particle size, particle size distribution and surface morphology. The results analyzed by SEM, TEM, EDX, FTIR and sieving showed that average particle size decreases with increasing initiator amount. Optimum uniformity was obtained at low initiator amount and high cross-linker amount. The results also showed that type of diluent does not affect average particle size, while particle distribution and surface morphology were affected by agitation speed.

Keywords

Suspension polymerization Polystyrene polymer Initiator Agitation speed Cross-linking density 

Abbreviations

ACN

Acrylonitrile

AIBN

Azobis isobutyl nitrile

DVB

Divinyl benzene

PAAm

Polyacrylamide

PMMA

Poly methyl methacrylate

PVA

Polyvinyl acetate

PVC

Polyvinylchloride

Notes

References

  1. 1.
    B.M.L. Dioos, I.F.J. Vankelecom, P.A. Jacobs, Adv. Synth. Catal. 348, 1413 (2006)Google Scholar
  2. 2.
    K. Kangwansupamonkon, S. Damronglerd, S. Kiatkamjornwong, J. Appl. Polym. Sci. 85, 654 (2002)Google Scholar
  3. 3.
    S. Kiatkamjornwong, P. Chientachakul, P. Prasassarakich, S. Damronglerd, J. Appl. Polym. Sci. 82, 1521 (2001)Google Scholar
  4. 4.
    S. Sharma, S. Sinha, S. Chand, Ind. Eng. Chem. Res. 51, 8806 (2006)Google Scholar
  5. 5.
    M.L. Mohammed, R. Mbeleck, B. Saha, Polym. Chem. 6, 7308 (2015)Google Scholar
  6. 6.
    B. Kaboudin, H. Khanmohammadi, F. Kazemi, Appl. Surf. Sci. 425, 400 (2017)Google Scholar
  7. 7.
    L.C. Gabriel, C. Jorge, R. Raul, A.V.C. Jorge, M.A. Ranulfo, J. Polym. Environ. 24, 264 (2016)Google Scholar
  8. 8.
    A.M. Atta, W. Brostow, T. Datashvili, R.A. El-Ghazawy, H.E. Hagg Lobland, A.R.M. Hasan, J.M. Perez, Polym. Int. 62, 116 (2013)Google Scholar
  9. 9.
    A.M. Atta, W. Brostow, H.E. Hagg Lobland, A.R.M. Hasan, J.M. Perez, Polym. Int. 62, 1225 (2013)Google Scholar
  10. 10.
    A.M. Atta, W. Brostow, H.E. Hagg Lobland, A.R.M. Hasan, J.M. Perez, RSC Adv. 3, 25849 (2013)Google Scholar
  11. 11.
    M.T. Gokmen, F.E.D. Prez, Prog. Polym. Sci. 37, 365 (2012)Google Scholar
  12. 12.
    R. Arshady, Colloid Polym. Sci. 270, 717 (1992)Google Scholar
  13. 13.
    R.P. Zu, F. Hong, X.W. Zhi, M.H. Zhi, Polym. Int. 30, 259 (1993)Google Scholar
  14. 14.
    Z. Dalei, L. Mingyue, L. Quan, G. Qiang, C. Zhanchen, Y. Bai, Polym. Int. 56, 195 (2007)Google Scholar
  15. 15.
    G. Yong, M.L. Hua, Polym. Int. 53, 1436 (2007)Google Scholar
  16. 16.
    Y. Feng, Z. Xiuwen, S. Zhaomei, Z. Aihua, Polym. Bull. 68, 1305 (2012)Google Scholar
  17. 17.
    V.J. Valentin, A.N. Florica, S.V. Dan, M.V. Dumitru, Polym. Bull. 66, 785 (2011)Google Scholar
  18. 18.
    I. Naomi, I. Kenzo, Polym. Bull. 63, 653 (2009)Google Scholar
  19. 19.
    F. Richard, A. Madhu, A. Joseph, K. David, J. Polym. Environ. 6, 115 (1998)Google Scholar
  20. 20.
    R. Tomovska, J.C. Cal, J.M. Asua, Reactions in Heterogeneous Media: Emulsion, Miniemulsion, Microemulsion, Suspension, and Dispersion Polymerization (Wiley, New York, 2014)Google Scholar
  21. 21.
    M.R. El-Aassar, E.A. Soliman, A.I. Hashem, S. Gang, N. Amaly, J. Polym. Res. 24, 207 (2017)Google Scholar
  22. 22.
    E.V. Lima, P.E. Wood, A. Hamielec, Ind. Eng. Chem. Res. 36, 939 (1997)Google Scholar
  23. 23.
    C. Lin, S. Yu, C.S. Chern, J. Polym. Res. 22, 110 (2015)Google Scholar
  24. 24.
    D. Yin, Q. Zhang, H. Zhang, C. Yin, J. Polym. Res. 17, 689 (2010)Google Scholar
  25. 25.
    N. Hassan, D. Abbas, M. Mohsen, J. Polym. Environ. 20, 794 (2012)Google Scholar
  26. 26.
    S. Mane, Can. Chem. Trans. 4, 210 (2016)Google Scholar
  27. 27.
    O. Aungsurpravate, W. Kangwansupamonkon, W. Chavasiri, S. Kiatkamjornwong, Polym. Eng. Sci. 447, 1 (2007)Google Scholar
  28. 28.
    C.K. Ober, M.L. Hair, J. Appl. Polym. Sci. 25, 1395 (1987)Google Scholar
  29. 29.
    Q. Liu, L. Wang, A. Xiao, H. Yu, Des. Monomers Polym. 13, 369 (2010)Google Scholar
  30. 30.
    S. Mane, S. Ponrathnam, N. Chavan, Can. Chem. Trans. 3, 473 (2015)Google Scholar
  31. 31.
    R.A.F. Machado, A. Bolzan, Chem. Eng. J. 70, l (1998)Google Scholar
  32. 32.
    A.B.D. Nandiyanto, A. Suhendi, T. Ogi, R. Umemoto, K. Okuyama, Chem. Eng. J. 256, 421 (2014)Google Scholar
  33. 33.
    T. Hongye, S. Jun, H. Rong, G. Feng, C. Daxiang, G. Hongchen, Front. Chem. China 1, 474 (2006)Google Scholar
  34. 34.
    R. Arshady, A. Ledwith, React. Polym. 1, 159 (1983)Google Scholar
  35. 35.
    B.W. Brooks, Chem. Eng. Technol. 33, 1737 (2010)Google Scholar
  36. 36.
    X. Wang, Z. Fu, N. Yu, J. Huang, J. Colloids. Interface Sci. 466, 322 (2016)Google Scholar
  37. 37.
    C.T.L. Luz, F.M.B. Coutinho, Polymer 42, 4931 (2001)Google Scholar
  38. 38.
    C.T.L. Luz, F.M.B. Coutinho, J. Appl. Polym. Sci. 91, 666 (2004)Google Scholar
  39. 39.
    L. Lu, C. Jiang, W. Xiufang, P. Pihui, Y. Zhuoru, J. Chinese, Chem. Engg. 14, 471 (2006)Google Scholar
  40. 40.
    S. Kiatkamjornwong, S. Traissaranapong, P. Prasassarakich, J. Porous Mater. 6, 215 (1999)Google Scholar
  41. 41.
    R. Rodrigo, C.A. Toro, J. Cuellar, Powder Technol. 247, 279 (2013)Google Scholar
  42. 42.
    J. Park, Y. Kim, H. Yoon, B. Jun, Y. Lee, J. Ind. Eng. Chem. 17, 794 (2011)Google Scholar
  43. 43.
    C. Hulubei, C.D. Vlad, I. Stoica, D. Popovici, G. Lisa, S.L. Nica, A.L. Barzic, J. Polym. Res. 21, 514 (2014)Google Scholar
  44. 44.
    T. Zhang, F. Zhou, J. Huang, R. Man, Chem. Eng. J. 339, 278 (2018)Google Scholar
  45. 45.
    P.J. Dowding, J.W. Goodwin, B. Vincent, Colloids Surf. A 145, 263 (1998)Google Scholar
  46. 46.
    N. Ballard, M. Aguirre, A. Simula, J.R. Leiza, S. Es, J.M. Asua, Chem. Eng. J. 316, 655 (2017)Google Scholar
  47. 47.
    M. Tanaka, T. Takahashi, I. Kimura, Chem. Eng. Technol. 19, 97 (1996)Google Scholar
  48. 48.
    A.V. Priscilla, B.G. Sílvia, M. Fabricio, J. Polym. Environ. 26, 1755 (2018)Google Scholar
  49. 49.
    P.J. Flory, J.J. Rehner, J. Chem. Phys. 11, 512 (1943)Google Scholar
  50. 50.
    P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953)Google Scholar
  51. 51.
    R. Arshady, A. Ledwith, React. Polym. 1, 159 (1983)Google Scholar
  52. 52.
    P. Giovanni, P. Maurizio, S. Daniele, Polym. Int. 48, 392 (1999)Google Scholar
  53. 53.
    D. Peng, C. Kun, X. Fang, J. Tao, M. Zhi, Polym. Int. (2018).  https://doi.org/10.1002/pi.5571 CrossRefGoogle Scholar
  54. 54.
    W.A. Syed, A.M. Muhammad, Y. Tariq, Polym. Bull. 73, 559 (2016)Google Scholar
  55. 55.
    J.K. Wan, A.K. Chul, K. Sanghee, Polym. Bull. 75, 1505 (2018)Google Scholar
  56. 56.
    A.K. Sharma, C. Caricato, E. Quartarone, S. Edizer, A.G. Schieroni, R. Mendichi, D. Pasini, Polym. Bull. 69, 911 (2012)Google Scholar
  57. 57.
    C.V. Luciani, K.Y. Choi, Z. Xiao, Chem. Eng. Technol. 33, 1833 (2010)Google Scholar
  58. 58.
    S. Nemeth, F.C. Thyrion, Chem. Eng. Technol. 18, 315 (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and TechnologyIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations