Advertisement

Catalytic deoxygenation of stearic acid and waste cooking oil over Pd/SBA-15 for obtaining hydrocarbons with potential as renewable liquid fuels

  • José G. Pacheco-Sosa
  • Anel I. Castillo-Escobedo
  • Juan C. Chavarria-HernandezEmail author
  • María C. Díaz-Félix
  • Hermicenda Pérez-Vidal
  • Luis C. Ordóñez
  • Jorge García-Dávila
  • Julio C. Morales-Ortuño
  • Beatriz Escobar
Article
  • 59 Downloads

Abstract

It has been found that catalytic deoxygenation of triglycerides is a viable pathway for obtaining renewable liquid fuels to contribute to meet the global energy demand. In this study, SBA-15 mesoporous silica was synthesized in a pure form and modified with mesitylene (TMB) as a swelling molecule (SBA15-TMB). Catalysts with 0.5, 1.5 and 3.0 wt% Pd were synthesized and tested by deoxygenation of stearic acid (SA), obtaining initial conversions of 68–98% that decreased to 36–73% after 6 h time-on-stream. The most abundant product was n-heptadecane, with a selectivity of ~ 90%. The most active catalyst evaluated with SA was 3.0 wt% Pd over unmodified SBA-15 (30Pd/SBA-15). Subsequently, fresh and regenerated 30Pd/SBA-15 catalysts were tested with waste cooking oil (WCO) feed, obtaining conversions of 74 and 72%, respectively, but the fresh catalyst allowed a better oxygen removal (91%. Additionally, commercial Pd(10wt %)/C catalyst was evaluated, obtaining results comparable to those for the regenerated 30Pd/SBA-15 catalyst. The main WCO reaction product for all catalysts was a diesel fraction (C12-C21), and the quality of the products was not very different, following the order: Pd(10wt %)/C > 3.0Pd/SBA-15-regenerated > 3.0Pd/SBA-15-fresh. The results obtained indicate that shynthetized catalysts of this study are promising for obtaining renewable diesel from low-cost feeds while using low hydrogen consumption.

Keywords

SBA-15 Catalytic deoxygenation Stearic acid Waste cooking oil Palladium Trimethylbenzene 

Notes

Acknowledgements

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) [Project of Basic Science No. 166640]; Bioenergy Thematic Network (“Red Temática de Bioenergía”), [Grant 260457]. Project 253986 is acknowledged for CHNS/O analyzes. Jose Gpe. Pacheco S. acknowledges the Programa para el Desarrollo Profesional Docente (PRODEP) (SEP -SES) and Universidad Juárez Autónoma de Tabasco for the scholarship and financial support for his doctoral studies.

References

  1. 1.
    E. Santillan-Jimenez, M. Crocker, J. Chem. Technol. Biotechnol. 87, 1041–1050 (2012)CrossRefGoogle Scholar
  2. 2.
    D. Kubička, L. Kaluža, Appl. Catal. A. 372, 199–208 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Berenblyum, T. Podoplelova, R. Shamsiev, E. Katsman, V.Y. Danyushevsky, V. Flid, Catal. Ind. 4, 209–214 (2012)CrossRefGoogle Scholar
  4. 4.
    J.G. Immer, H.H. Lamb, Energy Fuels 24, 5291–5299 (2010)CrossRefGoogle Scholar
  5. 5.
    P. Mäki-Arvela, I. Kubickova, M. Snåre, K. Eränen, D.Y. Murzin, Energy Fuels 21, 30–41 (2007)CrossRefGoogle Scholar
  6. 6.
    M. Snåre, I. Kubičková, P. Mäki-Arvela, D. Chichova, K. Eränen, D.Y. Murzin, Fuel 87, 933–945 (2008)CrossRefGoogle Scholar
  7. 7.
    P. Priecel, L. Čapek, D. Kubička, F. Homola, P. Ryšánek, M. Pouzar, Catal. Today 176, 409–412 (2011)CrossRefGoogle Scholar
  8. 8.
    T. Morgan, E. Santillan-Jimenez, A.E. Harman-Ware, Y. Ji, D. Grubb, M. Crocker, Chem. Eng. J. 189–190, 346–355 (2012)CrossRefGoogle Scholar
  9. 9.
    D. Kubička, J. Horáček, M. Setnička, R. Bulánek, A. Zukal, I. Kubičková, Appl. Catal. B. 145, 101–107 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Lestari, P. Mäki-Arvela, H. Bernas, O. Simakova, R. Sjöholm, J. Beltramini, G.Q.M. Lu, J. Myllyoja, I. Simakova, D.Y. Murzin, Energy Fuels 23, 3842–3845 (2009)CrossRefGoogle Scholar
  11. 11.
    J.G. Immer, M.J. Kelly, H.H. Lamb, Appl. Catal. A. 375, 134–139 (2010)CrossRefGoogle Scholar
  12. 12.
    I. Simakova, B. Rozmysłowicz, O. Simakova, P. Mäki Arvela, A. Simakov, D.Y. Murzin, Top. Catal. 54, 460–466 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Lestari, P. Mäki-Arvela, I. Simakova, J. Beltramini, G.M. Lu, D.Y. Murzin, Catal. Lett. 130, 48–51 (2009)CrossRefGoogle Scholar
  14. 14.
    P. Mäki-Arvela, B. Rozmysłowicz, S. Lestari, O. Simakova, K. Eränen, T. Salmi, D.Y. Murzin, Energy Fuels 25, 2815–2825 (2011)CrossRefGoogle Scholar
  15. 15.
    I. Simakova, O. Simakova, P. Mäki-Arvela, A. Simakov, M. Estrada, D.Y. Murzin, Appl. Catal. A 355, 100–108 (2009)CrossRefGoogle Scholar
  16. 16.
    I. Simakova, O. Simakova, P. Mäki-Arvela, D.Y. Murzin, Catal. Today 150, 28–31 (2010)CrossRefGoogle Scholar
  17. 17.
    G. Busca, Heterogeneous Catalytic Materials (Elsevier, Amsterdam, 2014), pp. 297–343CrossRefGoogle Scholar
  18. 18.
    J. Duan, J. Han, H. Sun, P. Chen, H. Lou, X. Zheng, Catal. Commun. 17, 76–80 (2012)CrossRefGoogle Scholar
  19. 19.
    U. Ciesla, F. Schüth, Microporous Mesoporous Mater. 27, 131–149 (1999)CrossRefGoogle Scholar
  20. 20.
    A. Vinu, T. Mori, K. Ariga, Sci. Technol. Adv. Mater. 7, 753–771 (2006)CrossRefGoogle Scholar
  21. 21.
    Y. Ren, Z. Ma, P.G. Bruce, Chem. Soc. Rev. 41, 4909–4927 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548–552 (1998)CrossRefGoogle Scholar
  23. 23.
    M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo, Chem. Mater. 12, 1961–1968 (2000)CrossRefGoogle Scholar
  24. 24.
    W.J.J. Stevens, K. Lebeau, M. Mertens, G. Van-Tendeloo, P. Cool, E.F. Vansant, J. Phys. Chem. B. 110, 9183–9187 (2006)CrossRefGoogle Scholar
  25. 25.
    L. Jiao, J.R. Regalbuto, J. Catal. 260, 342–350 (2008)CrossRefGoogle Scholar
  26. 26.
    J.H. Park, S.K. Kim, H.S. Kim, Y.J. Cho, J. Park, K.E. Lee, C.W. Yoon, S.W. Nam, S.O. Kang, Chem. Commun. 49, 10832–10834 (2013)CrossRefGoogle Scholar
  27. 27.
    R. Zubrzycki, T. Ressler, Microporous Mesoporous Mater. 214, 8–14 (2015)CrossRefGoogle Scholar
  28. 28.
    V.L. Zholobenko, A.Y. Khodakov, M. Impéror-Clerc, D. Durand, I. Grillo, Adv. Colloid Interface Sci. 142, 67–74 (2008)CrossRefGoogle Scholar
  29. 29.
    S.Y. Chen, Y.T. Chen, J.J. Lee, S. Cheng, J. Mater. Chem. 21, 5693–5703 (2011)CrossRefGoogle Scholar
  30. 30.
    W.J. Qiao, S.R. Zhai, F. Zhang, Z.Y. Xiao, Q.D. An, X.W. Song, J. Sol-Gel. Sci. Technol. 70, 451–463 (2014)CrossRefGoogle Scholar
  31. 31.
    F. Yin, S. Ji, P. Wu, F. Zhao, C. Li, J. Catal. 257, 108–116 (2008)CrossRefGoogle Scholar
  32. 32.
    H. Wang, C.J. Liu, Appl. Catal. B. 106, 672–680 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Boutros, M.E. Gálvez, T. Onfroy, P. Da Costa, Microporous Mesoporous Mater. 183, 1–8 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Lestari, P. Mäki-Arvela, K. Eränen, J. Beltramini, G.M. Lu, D.Y. Murzin, Catal. Lett. 134, 250–257 (2010)CrossRefGoogle Scholar
  35. 35.
    L. Fei, H.K. Reddy, J. Hill, Q. Lin, B. Yuan, Y. Xu, P. Dailey, S. Deng, H. Luo, J Nanotechnol. 2012, 1–6 (2012)CrossRefGoogle Scholar
  36. 36.
    N. Rahmat, A.Z. Abdullah, A.R. Mohamed, Am J Appl Sci. 7, 1579–1586 (2010)CrossRefGoogle Scholar
  37. 37.
    K. Flodström, V. Alfredsson, Microporous Mesoporous Mater. 59, 167–176 (2003)CrossRefGoogle Scholar
  38. 38.
    G.D. Stucky, B.F. Chmelka, D. Zhao, N. Melosh, Q. Huo, J. Feng, P. Yang, D. Pine, D. Margolese, W. Lukens Jr., G.H. Fredrickson, P. Schmidt-winkel, S. Patent No US 7,763,665 B2 (2010)Google Scholar
  39. 39.
    W.W. Lukens, P. Schmidt-Winkel, D. Zhao, J. Feng, G.D. Stucky, Langmuir 15, 5403–5409 (1999)CrossRefGoogle Scholar
  40. 40.
    P. Schmidt-Winkel, W.W. Lukens, D. Zhao, P. Yang, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 121, 254–255 (1999)CrossRefGoogle Scholar
  41. 41.
    W. Wang, W. Shan, H. Ru, X. Yue, J. Zhao, C. Zhang, B. Zhao, S. Gao, J. Sol-Gel. Sci. Technol. 64, 200–208 (2012)CrossRefGoogle Scholar
  42. 42.
    M. Mesa, L. Sierra, J.L. Guth, Microporous Mesoporous Mater. 112, 338–350 (2008)CrossRefGoogle Scholar
  43. 43.
    L. Chen, Y.M. Wang, M.-Y. He, J. Porous Mater. 18, 211–216 (2011)CrossRefGoogle Scholar
  44. 44.
    J. Liu, C. Li, Q. Yang, J. Yang, C. Li, Langmuir 23, 7255–7262 (2007)CrossRefGoogle Scholar
  45. 45.
    H. Zhang, J. Sun, D. Ma, X. Bao, A. Klein-Hoffmann, G. Weinberg, D. Su, R. Schlögl, J. Am. Chem. Soc. 126, 7440–7441 (2004)CrossRefGoogle Scholar
  46. 46.
    M. Lapuerta, J.M. Herreros, L.L. Lyons, R. García-Contreras, Y. Briceño, Fuel 87, 3161–3169 (2008)CrossRefGoogle Scholar
  47. 47.
    S. Bezergianni, A. Kalogianni, Bioresour. Technol. 100, 3927–3932 (2009)CrossRefGoogle Scholar
  48. 48.
    L.F. Chuah, J.J. Klemeš, S. Yusup, A. Bokhari, M.M. Akbar, Clean Technol. Environ. Policy 19, 859–868 (2017)Google Scholar
  49. 49.
    B. Veriansyah, J.Y. Han, S.K. Kim, S.A. Hong, Y.J. Kim, J.S. Lim, Y.W. Shu, S.G. Oh, J. Kim, Fuel 94, 578–585 (2012)CrossRefGoogle Scholar
  50. 50.
    S.D. Sanford, J.M. White, P.S. Shah, C. Wee, M.A. Valverde, G.R. Meier, Renew. Energy Group 416, 1–136 (2009)Google Scholar
  51. 51.
    D. Agarwal, A.K. Agarwal, ‎Appl. Therm. Eng. 27, 2314–2323 (2007)CrossRefGoogle Scholar
  52. 52.
    S. Harnos, G. Onyestyák, D. Kalló, React. Kinet. Mech. Catal. 106, 99–111 (2012)CrossRefGoogle Scholar
  53. 53.
    M. Snåre, I. Kubičková, P. Mäki-Arvela, K. Eränen, D.Y. Murzin, Ind. Eng. Chem. Res. 45, 5708–5715 (2006)CrossRefGoogle Scholar
  54. 54.
    B. Donnis, R.G. Egeberg, P. Blom, K.G. Knudsen, Top. Catal. 52, 229–240 (2009)CrossRefGoogle Scholar
  55. 55.
    S.K. Kim, J.Y. Han, H.S. Lee, T. Yum, Y. Kim, J. Kim, Appl. Energy 116, 199–205 (2014)CrossRefGoogle Scholar
  56. 56.
    P. Mäki-Arvela, I. Kubickova, M. Snåre, K. Eränen, D.Y. Murzin, Energy Fuels 21, 30–41 (2007)CrossRefGoogle Scholar
  57. 57.
    M.Z. Hossain, M.B.I. Chowdhury, A.K. Jhawar, W.Z. Xu, P.A. Charpentier, Fuel 212, 470–478 (2018)CrossRefGoogle Scholar
  58. 58.
    T.V. Bobkova, O.V. Potapenko, V.P. Doronin, T.P. Sorokina, Fuel Process. Technol. 172, 172–178 (2018)CrossRefGoogle Scholar
  59. 59.
    P. Mäki-Arvela, M. Snåre, K. Eränen, J. Myllyoja, D.Y. Murzin, Fuel 87, 3543–3549 (2008)CrossRefGoogle Scholar
  60. 60.
    H. Bernas, K. Eränen, I. Simakova, A.R. Leino, K. Kordás, J. Myllyoja, P. Mäki-Arvela, T. Salmi, D.Y. Murzin, Fuel 89, 2033–2039 (2010)CrossRefGoogle Scholar
  61. 61.
    G.S. Lepak, B.R. Moser, E.L. Bakota, J. Sharp, C.D. Thornton, T. Walker, Int. J. Sustainable Eng. 10, 105–114 (2017)Google Scholar
  62. 62.
    A. Demirbas, Energy Policy 35, 4661–4670 (2007)CrossRefGoogle Scholar
  63. 63.
    J. Martínez, F. Ruiz, Rev. Mex. Fis. 48, 142–149 (2002)Google Scholar
  64. 64.
    M. Selvaraj, P.K. Sinha, K. Lee, I. Ahn, A. Pandurangan, T.G. Lee, Microporous Mesoporous Mater. 78, 139–149 (2005)CrossRefGoogle Scholar
  65. 65.
    K. Bendahou, L. Cherif, S. Siffert, H. Tidahy, H. Benaissa, A. Aboukais, Appl. Catal. A. 351, 82–87 (2008)CrossRefGoogle Scholar
  66. 66.
    M.D. Guillen, N. Cabo, J. Sci. Food Agric. 75, 1–11 (1997)CrossRefGoogle Scholar
  67. 67.
    P. de la Mata, A. Dominguez-Vidal, J.M. Bosque-Sendra, A. Ruiz-Medina, L. Cuadros-Rodríguez, Food Control 23, 449–455 (2012)CrossRefGoogle Scholar
  68. 68.
    E.A. Shalaby, N. El-Gendy, Int. J. Chem. Biochem. Sci. 1, 30–35 (2012)Google Scholar
  69. 69.
    M. Safar, D. Bertrand, P. Robert, M. Devaux, C. Genot, J. Am. Oil Chem. Soc. 71, 371 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • José G. Pacheco-Sosa
    • 1
    • 2
  • Anel I. Castillo-Escobedo
    • 1
  • Juan C. Chavarria-Hernandez
    • 1
    Email author
  • María C. Díaz-Félix
    • 2
  • Hermicenda Pérez-Vidal
    • 2
  • Luis C. Ordóñez
    • 1
  • Jorge García-Dávila
    • 3
  • Julio C. Morales-Ortuño
    • 1
  • Beatriz Escobar
    • 1
  1. 1.Unidad de Energía Renovable, Centro de Investigación Científica de YucatánMéridaMexico
  2. 2.División Académica de Ciencias Básicas (DACB)Universidad Juárez Autónoma de Tabasco (UJAT)CunduacánMexico
  3. 3.Universidad Politécnica de Tlaxcala, Ingeniería En BiotecnologíaTepeyancoMexico

Personalised recommendations